Rationality, Morality and Economics Topic 3, Lecture 2

Newcomb's Problem

Rob Trueman rob.trueman@york.ac.uk

University of York

Newcomb's Problem

Re-Cap

Why Ain'cha Rich?

A Medical Newcomb Problem

The Tickle Defence

Where Next?

Three Decision Theories

• Standard Expected Utility Theory uses *unconditional* probabilities of states:

$$- EU(a) = \sum_{i=1}^{n} P(s_i) \times U(a \wedge s_i)$$

• **Evidential Decision Theory** (EDT) uses *conditional* probabilities of states given acts:

$$- EU_e(a) = \sum_{i=1}^n P(s_i|a) \times U(a \wedge s_i)$$

• **Causal Decision Theory** (CDT) uses *unconditional* probabilities of counterfactual conditionals:

$$- EU_c(a) = \sum_{i=1}^n P(a \Box \rightarrow s_i) \times U(a \land s_i)$$

EDT or CDT?

- EDT and CDT make the same recommendations in most "real life" decision problems
- In most normal circumstances, if P(s|a) > P(s), then that is only because P(a □→ s) is high
- But they make different recommendations in the **Newcomb Problem**

One Box or Two?

Box B

• You are presented with two boxes

One Box or Two?

• Box A is transparent, and you can see that it contains $\pounds 1,000$

One Box or Two?

• Box B is opaque, and you cannot see what is in it

One Box or Two?

• You know that Box B is either empty...

One Box or Two?

• ...or it contains £1,000,000...

One Box or Two?

• ...but you do not know which

One Box or Two?

• You are made an offer:

One Box or Two?

• You may either take Box B, or take both Box A and Box B

The Predictor

- One week ago, a woman known as the Predictor made a prediction about whether you would take one box or two boxes
- If she predicted that you would only take Box B, she put the $\pounds1,000,000$ in B
- But if she predicted that you would take both Boxes A and B, she put nothing in B

The Predictor

- The Predictor based her prediction on information about you that was available to her last week
- The Predictor's is very reliable
- The Predictor has played this game with lots and lots of people, and her predictions have always been right

One Box or Two?

• So now: will you take both boxes, or just Box B?

One-Boxing is E-Rational

	B is empty	B is not empty
One-box	£0	£1,000,000
Two-box	£1,000	$\pounds1,001,000$

$$P(E|O) = 0.1; \ P(\neg E|O) = 0.9$$
$$P(E|T) = 0.9; \ P(\neg E|T) = 0.1$$

 $\begin{aligned} & EU_e(O) = [0.1 \times 0] + [0.9 \times 1,000,000] = 900,000 & \checkmark \\ & EU_e(T) = [0.9 \times 1,000] + [0.1 \times 1,001,000] = 101,000 & \times \end{aligned}$

Two-Boxing is C-Rational

	B is empty	B is not empty
One-box	£0	$\pounds1,000,000$
Two-box	£1,000	\pounds 1,001,000

$$P(O \square \rightarrow E) = P(T \square \rightarrow E)$$
$$P(O \square \rightarrow \neg E) = P(T \square \rightarrow \neg E)$$

Whatever you do now, whether B is full or empty is already fixed and settled!

 $EU_{c}(O) = [P(O \Box \rightarrow E) \times 0] + [P(O \Box \rightarrow \neg E) \times 1,000,000] \times \\EU_{c}(T) = [P(T \Box \rightarrow E) \times 1,000] + [P(T \Box \rightarrow \neg E) \times 1,001,000] \checkmark$

RME (3.2): Newcomb's Problem └─Why Ain'cha Rich?

Newcomb's Problem

Re-Cap

Why Ain'cha Rich?

A Medical Newcomb Problem

The Tickle Defence

Where Next?

An Argument for EDT

- Everyone agrees that if you take EDT's advice and one-box, then you will probably get $\pounds 1,000,000$
- Everyone agrees that if you take CDT's advice and two-box, then you will probably get only $\pounds1,000$
- So isn't it obvious that EDT is the right view of rationality?
 - Following EDT predictably gets you more of what you value
- The Challenge to CDT: Why ain'cha rich?

Lewis's Defence of CDT

- Lewis's (1981b) Answer: It was never an option for me to get rich!
- A two-boxer takes all the money that's available to them in the Newcomb problem, it's just that there's only $\pounds 1,000$ in the two boxes
- The two-boxer's choice to take both boxes didn't deprive them of any money
- It **maximised** the amount of money that they could get out of the situation they were confronted with!

A Point in EDT's Favour

- According to Lewis, Newcomb's Problem is generated by the Predictor's decision to reward people who will *irrationally* one-box
- However, Lewis also recognises that there is an important asymmetry between CDT and EDT
- The standard Newcomb problem where people are rewarded for being C-irrational is logically coherent
- A Newcomb-style problem where people are rewarded for being E-irrational would be **logically incoherent**

A Point in EDT's Favour

- Imagine I told you that the Predictor would put $\pounds 1,000,000$ into Box B iff you two-box
- In that case, two-boxing is E-rational!
- More generally, if we try to set-up a Newcomb-style problem where the Predictor rewards a certain choice, she automatically makes it the **E-rational** choice
- So it is impossible for her to reward **E-irrational** choices

RME (3.2): Newcomb's Problem

Newcomb's Problem

Re-Cap

Why Ain'cha Rich?

A Medical Newcomb Problem

The Tickle Defence

Where Next?

A Bit Too Sci-Fi?

- Newcomb's Problem is so unrealistic that you might not think it can tell us anything very interesting about rationality
 - If a decision theory gets it wrong in Newcomb's Problem, who cares?
 - Can we even rely on our intuitions to tell us what is the right decision in Newcomb's Problem?
- Philosophers hae tried to deal with this problem by finding more realistic versions of Newcomb's Problem
- And notably, the equivalent of two-boxing is generally agreed to be the rational course of action in these realistic Newcomb Problems

A Medical Problem

- We all know that there is a very strong statistical correlation between smoking and getting lung cancer
- We also all know that smoking causes lung cancer
- But imagine that things were really like this:
 - There is a gene which causes cancer in the vast majority of people who have it
 - This gene also causes the vast majority of people who have it to smoke
 - But smoking itself does not cause cancer

Should You Smoke?

- This problem is structurally identical to the Newcomb Problem
 - If you find yourself smoking, then that should increase your credence that you have cancer
 - But smoking doesn't cause cancer the gene does, and even if you force yourself not to smoke, you will still have the gene
- But this problem is a lot more realistic than the traditional Newcomb Problem
 - It doesn't really have to be true that the gene causes smoking and cancer
 - Since EDT and CDT *both* use subjective credences to calculate expected utility, all that matters is that the agent in the problem **believes** that it is true

RME (3.2): Newcomb's Problem └─A Medical Newcomb Problem

What EDT Says

	Cancer	No Cancer
Smoke	-100	50
Don't Smoke	-150	0

$$P(C|S) = 0.9; P(\neg C|S) = 0.1$$
$$P(C|\neg S) = 0.2; P(\neg C|\neg S) = 0.8$$

 $EU_e(S) = [0.9 \times -100] + [0.1 \times 50] = -85$ $EU_e(\neg S) = [0.2 \times -150] + [0.8 \times 0] = -30$

×

RME (3.2): Newcomb's Problem └─A Medical Newcomb Problem

What CDT Says

	Cancer	No Cancer
Smoke	-100	50
Don't Smoke	-150	0

$$P(S \square \to C) = P(\neg S \square \to C)$$
$$P(S \square \to \neg C) = P(\neg S \square \to \neg C)$$

$$\begin{split} & EU_c(S) = [P(S \square \rightarrow C) \times -100] + [P(S \square \rightarrow \neg C) \times 50] \quad \checkmark \\ & EU_c(\neg S) = [P(\neg S \square \rightarrow C) \times -150] + [P(\neg S \square \rightarrow \neg C) \times 0] \quad \times \end{split}$$

A Victory for CDT?

- Most people think that it is obviously irrational to quit smoking in the Medical Newcomb Problem
 - Not smoking now cannot change whether you have the gene which causes cancer
 - But not smoking now will rob you of the pleasure of smoking
- So does that show CDT is right and EDT is wrong?
- *Not yet!* A number of EDTers have argued that EDT actually recommends that you smoke in the Medical Newcomb Problem

RME (3.2): Newcomb's Problem └─ The Tickle Defence

Newcomb's Problem

Re-Cap

Why Ain'cha Rich?

A Medical Newcomb Problem

The Tickle Defence

Where Next?

How does the Gene Cause Smoking?

(1) The gene makes you want to smoke

- This is the only plausible and relevant explanation

(2) The gene makes you compulsively smoke against your will

 If you aren't really choosing whether to smoke or not, then we can't really dicuss whether your choices are rational

(3) Magic

 The Medical Newcomb Problem is meant to be *more* realistic than the traditional Newcomb Problem!

Knowing Your Own Mind

- A fully rational agent should be aware of their own beliefs and desires
- So a fully rational agent should be aware if they want to smoke
- If they do notice that they want to smoke, then that should increase their credence that they have the smoking gene, and so increase their credence that they will get cancer
- But once that has happened, their credence shouldn't be *further* affected by whether or not they actually go on to smoke

A Comparisson

- Imagine a car drives past, and that you have never seen that car before
- Seeing this should obviously increase your credence that someone turned the ignition key in that car
- But it shouldn't affect your credence if you could already hear the car's engine running
 - Hearing the engine running and seeing it drive past are both evidence that the ignition key was turned
 - But once you have one of these pieces of evidence, getting the other shouldn't boost your credence that the key was turned

A Comparisson

- In the Medical Newcomb Problem, feeling a desire to smoke and actually smoking are both evidence that you have the smoking gene
- But once you have one of these pieces of evidence, getting the other shouldn't boost your credence that you have the gene
- If you are maximally rational, you already know your desires, and so already know if you have the desire to smoke
- So whether you actually smoke shouldn't affect your credences

- In the Medical Newcomb Problem, you should first check whether you want to smoke, and update your credence that you will get cancer
 - If you do want to smoke (*W*), then set your credence as: P(C) = P(C|W)
 - If you don't want to smoke $(\neg W)$, then set your credence as: $P(C) = P(C|\neg W)$
- Once you know whether or not you want to smoke, actually smoking doesn't change your credences at all

$$- P(C|W \wedge S) = P(C|W \wedge \neg S) = P(C|W)$$

$$- P(C|\neg W \land S) = P(C|\neg W \land \neg S) = P(C|\neg W)$$

- In the Medical Newcomb Problem, you should first check whether you want to smoke, and update your credence that you will get cancer
 - If you do want to smoke (*W*), then set your credence as: P(C) = P(C|W)
 - If you don't want to smoke $(\neg W)$, then set your credence as: $P(C) = P(C|\neg W)$
- Once you know whether or not you want to smoke, actually smoking doesn't change your credences at all

$$- P(C|W \wedge S) = P(C|W \wedge \neg S) = P(C|W)$$

- $P(C|\neg W \land S) = P(C|\neg W \land \neg S) = P(C|\neg W)$
- Therefore, $P(C|S) = P(C|\neg S) = P(C)$

- In the Medical Newcomb Problem, you should first check whether you want to smoke, and update your credence that you will get cancer
 - If you do want to smoke (*W*), then set your credence as: P(C) = P(C|W)
 - If you don't want to smoke $(\neg W)$, then set your credence as: $P(C) = P(C|\neg W)$
- Once you know whether or not you want to smoke, actually smoking doesn't change your credences at all

$$- P(C|S) = P(C|\neg S) = P(C)$$

- $P(C|\neg W \land S) = P(C|\neg W \land \neg S) = P(C|\neg W)$
- Therefore, $P(C|S) = P(C|\neg S) = P(C)$

- In the Medical Newcomb Problem, you should first check whether you want to smoke, and update your credence that you will get cancer
 - If you do want to smoke (W), then set your credence as: P(C) = P(C|W)
 - If you don't want to smoke $(\neg W)$, then set your credence as: $P(C) = P(C|\neg W)$
- Once you know whether or not you want to smoke, actually smoking doesn't change your credences at all
 - $P(C|W \land S) = P(C|W \land \neg S) = P(C|W)$

$$- P(C|\neg W \land S) = P(C|\neg W \land \neg S) = P(C|\neg W)$$

- In the Medical Newcomb Problem, you should first check whether you want to smoke, and update your credence that you will get cancer
 - If you do want to smoke (W), then set your credence as: P(C) = P(C|W)
 - If you don't want to smoke $(\neg W)$, then set your credence as: $P(C) = P(C|\neg W)$
- Once you know whether or not you want to smoke, actually smoking doesn't change your credences at all
 - $P(C|W \land S) = P(C|W \land \neg S) = P(C|W)$

$$- P(C|S) = P(C|\neg S) = P(C)$$

- In the Medical Newcomb Problem, you should first check whether you want to smoke, and update your credence that you will get cancer
 - If you do want to smoke (*W*), then set your credence as: P(C) = P(C|W)
 - If you don't want to smoke $(\neg W)$, then set your credence as: $P(C) = P(C|\neg W)$
- Once you know whether or not you want to smoke, actually smoking doesn't change your credences at all

$$- P(C|W \wedge S) = P(C|W \wedge \neg S) = P(C|W)$$

$$- P(C|\neg W \land S) = P(C|\neg W \land \neg S) = P(C|\neg W)$$

- In the Medical Newcomb Problem, you should first check whether you want to smoke, and update your credence that you will get cancer
 - If you do want to smoke (*W*), then set your credence as: P(C) = P(C|W)
 - If you don't want to smoke $(\neg W)$, then set your credence as: $P(C) = P(C|\neg W)$
- Once you know whether or not you want to smoke, actually smoking doesn't change your credences at all

$$- P(C|W \wedge S) = P(C|W \wedge \neg S) = P(C|W)$$

$$- P(C|\neg W \land S) = P(C|\neg W \land \neg S) = P(C|\neg W)$$

- Therefore, $P(C|S) = P(C|\neg S) = P(C)$
- It also follows that $P(\neg C|S) = P(\neg C|\neg S) = P(\neg C)$

RME (3.2): Newcomb's Problem

What EDT Says Now

	Cancer	No Cancer
Smoke	-100	50
Don't Smoke	-150	0

$$P(C|S) = P(C|\neg S) = P(C)$$
$$P(\neg C|S) = P(\neg C|\neg S) = P(C)$$

 $EU_e(S) = [P(C) \times -100] + [P(\neg C) \times 50] \qquad \checkmark$ $EU_e(\neg S) = [P(C) \times -150] + [P(\neg C) \times 0] \qquad \times$

Lewis's Objection

- The Tickle Defence relies on the assumption that a fully rational agent should know all of their beliefs and desires
- Lewis (1981a: 10–11) objected that while this might be fine for **fully rational** agents, real agents are not like that
- So the Tickle Defence is useless for merely **partly rational** agents like us
- Agents like *us* should use CDT, not EDT

Responding to Lewis

One should not object here that a person's desires may not always be accessible to introspection. This is true but irrelevant. Our [Tickle Defence] needs to be employed only for situations that provide alleged counterexamples to [EDT]. And there can be a counterexample to [EDT] only if the [theory] is applied, and therefore only if the beliefs and desires of the agent are known by him at the time of deliberation.

(Horwich 1987: 183)

RME (3.2): Newcomb's Problem └─Where Next?

Newcomb's Problem

Re-Cap

Why Ain'cha Rich?

A Medical Newcomb Problem

The Tickle Defence

Where Next?

Other Realistic Problems

- A number of "real life" Newcomb Problems have been discussed
- Most interestingly, Lewis (1979) argued that the classic Prisonner's Dilemma is a version of the Newcomb Problem
- It is an open question whether the Tickle Defence can be used to undermine all of these other Newcomb-style Problems
 - For attempts to use the Tickle Defence in a range of cases, see: Horwich 1981: ch. 11; Ahmed 2014: ch. 4

Ratifiability?

- Some EDTers have tried to find different ways of defending their theory
- Jeffrey (1981) suggested tweaking EDT by insisting that a rational decision must be **ratifiable**
- According to this idea, act A is rational only if there is no act B such that the value of B exceeds the value of A on the supposition that A is the act decided upon
 - Not smoking in the Medical Newcomb Problem is unratifiable
 - Once you choose not to smoke, whether you actually smoke ceases to serve as evidence that you have the bad gene
 - At that point, smoking becomes E-rational!

RME (3.2): Newcomb's Problem

Ratifiability?

- Egan (2007: 107–13) argues that insisting that rational decisions must be ratifiable cannot save CDT or EDT
- In fact, he goes even further: he thinks that *nothing* can save CDT or EDT
- We will discuss Egan's paper in the seminar

References

- Ahmed, Arif (2014) *Evidence, Decision and Causality,* Cambridge: CUP
- Egan, Andy (2007) 'Some Counterexamples to Causal Decision Theory', *The Philosophical Review* 116: 93–114
- Horwich, Paul (1987) *Asymmetries in Time*, Cambridge, MA: MIT Press
- Jeffrey, Richard (1981) '*The Logic of Decision* Defended', *Synthese* 48: 473–492
- Lewis, David (1979) 'Prisoners' Dilemma is a Newcomb Problem', *Philosophy & Public Affairs* 8: 235–240
- — (1981a) 'Causal Decision Theory', *Australasian Journal* of *Philosophy* 59: 5–30
- —— (1981b) 'Why Ain'cha Rich?', *Noûs* 15: 377–380