Rationality, Morality and Economics Topic 2, Lecture 1

The Axioms of Expected Utility Theory

Rob Trueman rob.trueman@york.ac.uk

University of York

The Axioms of Expected Utility Theory

Expected Utility Theory

Von Neumann and Morgenstern's Representation Theorem

Savage's Representation Theorem

Money Pumps

Objections to Money Pumps

Decisions Under Risk

- Last week we focussed on decisions under ignorance
 - We know what the possible outcomes of the decision would be, but we have no way of assigning any probabilities to those outcomes
- This week, we will look at decisions under risk
 - We know what the possible outcomes of the decision would be, and we can assign probabilities to these outcomes

An Example

Should you go to see Glass?

	Underrated (.2)	Bad as they say (.8)
See it	10	1
Stay home	4	6

• Principle of Maximising Expected Utility (MEU): Act so as to maximise your expected utility

- $EU(A) = \sum_{i=1}^{n} [P(s_i) \times U(A \wedge s_i)]$

- EU(See it) = $(10 \times 0.2) + (1 \times 0.8) = 2.8$
- EU(Stay home) = (4 × 0.2) + (6 × 0.8) = 4.8

The Axioms of Expected Utility Theory

Expected Utility Theory

Von Neumann and Morgenstern's Representation Theorem

Savage's Representation Theorem

Money Pumps

Objections to Money Pumps

Where Do Utilities Come From?

	Underrated (.2)	Bad as they say (.8)
See it	10	1
Stay home	4	6

- To apply MEU, your utilities must be measured on an *interval* scale
 - If u(a) u(b) > u(c) u(d), then you prefer a to be b more than you prefer c to d
- If I asked, could you really tell me what your utilities are, on an interval scale?

Where Do Utilities Come From?

	Underrated (.2)	Bad as they say (.8)
See it	?	?
Stay home	?	?

- To apply MEU, your utilities must be measured on an *interval* scale
 - If u(a) u(b) > u(c) u(d), then you prefer a to be b more than you prefer c to d
- If I asked, could you really tell me what your utilities are, on an interval scale?
- If not, where do these utilities come from !?

A Representation Theorem

- Von Neumann and Morgensten's Representation Theorem
 - If your preferences satisfy some fundamental axioms, then it is possible to construct an interval utility scale which represents your preferences
- To state these axioms, we use some standard notation:
 - $A \succ B$: you prefer A to B
 - $A \succeq B$: you do not prefer B to A
 - $A \sim B$: you are indifferent between A and B

A Representation Theorem

- Von Neumann and Morgensten's Representation Theorem
 - If your preferences satisfy some fundamental axioms, then it is possible to construct an interval utility scale which represents your preferences
- To state these axioms, we use some standard notation:
 - $A \succ B$: you prefer A to B
 - $A \succeq B : B \not\succ A$
 - $A \sim B$: you are indifferent between A and B

A Representation Theorem

- Von Neumann and Morgensten's Representation Theorem
 - If your preferences satisfy some fundamental axioms, then it is possible to construct an interval utility scale which represents your preferences
- To state these axioms, we use some standard notation:

$$- A \succ B$$
: you prefer A to B

$$- A \succeq B \colon B \not\succ A$$

 $- A \sim B: A \succeq B \text{ and } B \succeq A$

A Representation Theorem

- Von Neumann and Morgensten's Representation Theorem
 - If your preferences satisfy some fundamental axioms, then it is possible to construct an interval utility scale which represents your preferences
- To state these axioms, we use some standard notation:
 - $A \succ B$: you prefer A to B
 - $A \succeq B : B \not\succ A$
 - $A \sim B$: $A \succeq B$ and $B \succeq A$
 - ApB: lottery with probability p of A, and probability 1 p of B
- **NOTE:** on this set-up, decision problems are choices between lotteries, and lotteries are what you have preferences over

Acts as Lotteries

	Underrated (.2)	Bad as they say (.8)
See it	10	1
Stay home	4	6

- We can think of seeing the film as a lottery
 - There is a 0.2 chance of seeing an underrated film, and a 0.8 chance of seeing a film that is as bad as people say
- We can similarly think of staying home as a lottery, but with different possible prizes
 - There is a 0.2 chance of missing an underrated film, and a 0.8 chance of missing a bad film

The vNM Axioms

vNM1: Completeness

 $- A \succeq B \text{ or } B \succeq A$

• vNM2: Transitivity

- If $A \succeq B$ and $B \succeq C$, then $A \succeq C$

• vNM3: Independence

- $A \succ B$ if and only if $ApC \succ BpC$ (where 0)

• vNM4: Continuity

- If $A \succ B \succ C$ then there exists some p and q such that $ApC \succ B \succ AqC$ (where 0 and <math>0 < q < 1)

The vNM Representation Theorem

- ≻ satisfies vNM 1–4 if and only if there is a function, *u*, from lotteries to real numbers such that:
 - (1) $A \succ B$ if and only if u(A) > u(B)
 - (2) u(ApB) = pu(A) + (1 p)u(B)
 - (3) For any function u' which satisfies (1) and (2), there are some numbers m > 0 and c such that: u'(A) = mu(A) + c

It's As If You're Maximising Expected Utility

- If your preferences satisfy vNM 1-4, then we can treat you as if you were maximising expected utility
 - We can construct an interval utility scale which reflects your preferences
 - Whatever choice you make in a decision problem, that choice will have the highest expected utility on your utility scale
- **IMPORTANT:** You might not think of yourself as maximising expected utility
- Utility scales are the invention of decision theorists, who use them to neatly describe your decision practices

The Axioms of Expected Utility Theory

Expected Utility Theory

Von Neumann and Morgenstern's Representation Theorem

Savage's Representation Theorem

Money Pumps

Objections to Money Pumps

Where Do Probabilities Come From?

	Underrated (.2)	Bad as they say (.8)
See it	10	1
Stay home	4	6

- In standard expected utility theory, probabilities are subjective
 - Subjective probabilities (aka *credences*) are real numbers which measure your degree of belief
- If I asked, could you really tell me exactly what your subjective probabilities are, or even just to five decimal places?

Where Do Probabilities Come From?

	Underrated (.?)	Bad as they say (.?)
See it	10	1
Stay home	4	6

- In standard expected utility theory, probabilities are subjective
 - Subjective probabilities (aka *credences*) are real numbers which measure your degree of belief
- If I asked, could you really tell me exactly what your subjective probabilities are, or even just to five decimal places?
- If not, where do these probabilities come from !?

Savage's Representation Theorem

• If your preferences satisfy certain axioms, then there is a utility function *u* and a probability function *p* such that:

(1)
$$A \succ B$$
 if and only if $u(A) > u(B)$

(2)
$$EU(A) = \sum_{i=1}^{n} [P(s_i) \times U(A \wedge s_i)]$$

(3) For any function u' which satisfies (1), there are some numbers m > 0 and c such that: u'(A) = mu(A) + c

RME (2.1): The Axioms of Expected Utility Theory - Savage's Representation Theorem

Savage's Axioms

- Savage shares two axioms with von Neumann and Morgenstern:
 - **Completeness:** $A \succeq B$ or $B \succeq A$
 - **Transitivity:** If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- However, Savage drops the other two axioms, Independence and Continuity, which deal with precise numerical probabilities
- Instead, Savage adds another five axioms, none of which say anything about precise probabilities
- These extra axioms are quite complex, and so we will not go through them now
 - See Box 7.1 of the Peterson's An Introduction to Decision Theory

It's As If You're Maximising Expected Utility

- If a person's preferences behave in the right way, we can construct a utility function **and** a probability function for them
- We can then understand their behaviour by thinking of them *as if* they were maximising expected utility
- **IMPORTANT:** You might not think of yourself as maximising expected utility
- Utility scales **and** probability functions are the inventions of decision theorists

RME (2.1): The Axioms of Expected Utility Theory - Savage's Representation Theorem

An Exciting Thought...

- Philosophers have long thought many (most?) mental states fall into two categories: **beliefs** and **desires**
- Your credence in a proposition represents your degree of belief in that proposition
 - If your credence in the proposition that it will snow tomorrow is 0.2, then you believe that proposition to the degree 0.2
- Your utilities represent your relative desires
 - If your utility for A is 2 and your utility for B is 1, then you desire A more than B
- Savage's Representation Theorem shows that we can reduce your credences (=beliefs) and your desires (=utilities) to your preferences

RME (2.1): The Axioms of Expected Utility Theory - Savage's Representation Theorem

An Exciting Thought...

- Some decision theorists think that we can explain what it means to "prefer" one outcome to another in terms of your **dispositions to choose**
 - To prefer A to B is to be disposed to choose A over B
 - To prefer B to A is to be disposed to choose B over A
 - To be indifferent between A and B is to lack a disposition to choose one over the other
- If this is right, then Savage's Representation Theorem shows that we can reduce your beliefs and desires to your dispositions to choose
- This is a version of *behaviourism*, the doctrine that your mental states can somehow be reduced to your behaviour

The Axioms of Expected Utility Theory

Expected Utility Theory

Von Neumann and Morgenstern's Representation Theorem

Savage's Representation Theorem

Money Pumps

Objections to Money Pumps

The vNM Axioms

vNM1: Completeness

 $- A \succeq B \text{ or } B \succeq A$

• vNM2: Transitivity

- If $A \succeq B$ and $B \succeq C$, then $A \succeq C$

• vNM3: Independence

- $A \succ B$ if and only if $ApC \succ BpC$ (where 0)

• vNM4: Continuity

- If $A \succ B \succ C$ then there exists some p and q such that $ApC \succ B \succ AqC$ (where 0 and <math>0 < q < 1)

Normative versus Descriptive

- The vNM axioms are not meant to describe real people's real preferences
- They are meant to describe the preferences of an **ideally** rational agent
- We are dealing with **normative** decision theory, not **descriptive** decision theory
 - Descriptive decision theory describes how people *actually* make decisions
 - Normative decision theory describes how people *should* make decisions
- **Big Question:** Are we rationally required to conform to the vNM axioms?

Is Transitivty Rationally Required?

- **Transitivity:** If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Sharon prefers tea with two sugars to tea with one sugar, because it tastes nicer, and two sugars isn't that much unhealthier than one
- Sharon also prefers tea with one sugar to tea with no sugar, again because it tastes better, and one sugar isn't that much unhealthier than none
- But Sharon prefers tea with no sugar to tea with two sugars, because two sugars is much unhealthier than none
- Are Sharon's preferences irrational?

A Money Pump

Two Sugars

Cyclic Preferences can be Money Pumped

• Cyclic preferences are preferences which run in a cricle

$$-A_1 \succ A_2 \succ \ldots \succ A_n \succ A_1$$

- Someone with cyclic preferences can be money pumped
 - They start with A_n
 - Since they prefer A_{n-1} to A_n , they are happy to pay a small fee to swap to A_{n-1}
 - ...
 - Since they prefer A₁ to A₂, they are happy to pay a small fee to swap to A₁
 - Since they prefer A_n to A₁, they are happy to pay a small fee to swap back to A_n
- Many take this to show that cyclic preferences are irrational, but there are objections...

The Axioms of Expected Utility Theory

Expected Utility Theory

Von Neumann and Morgenstern's Representation Theorem

Savage's Representation Theorem

Money Pumps

Objections to Money Pumps

Objection 1: Other ways of being Intransitive

• If the money pump argument works, it shows that you shouldn't have **cyclic** preferences

- But there are other ways of having intransitive preferences
 - $A \succ B \succ C \sim A$
 - $-A \succ B \sim C \sim A$
- We would have to extend the money pump argument somehow to show that intransitive preferences in general are irrational
 - We will look at how we might do that in the next lecture

Objection 2: Backwards Induction

• A clever decision maker could get out of the money pump by applying **backwards induction**

Objection 2: Backwards Induction

• A clever decision maker could get out of the money pump by applying **backwards induction**

• At the last stage, you would choose $C - 3\epsilon$ over $A - 2\epsilon$

Objection 2: Backwards Induction

• A clever decision maker could get out of the money pump by applying **backwards induction**

• But in that case, your choice at the second stage is really between $B - \epsilon$ and $C - 3\epsilon$

Objection 2: Backwards Induction

• A clever decision maker could get out of the money pump by applying **backwards induction**

• Since you prefer $B - \epsilon$ to $C - 3\epsilon$, at the second stage you would choose $B - \epsilon$

Objection 2: Backwards Induction

• A clever decision maker could get out of the money pump by applying **backwards induction**

• So your first choice is really just between C and $B - \epsilon$, and so you would exit the pump at $B - \epsilon$

Response: A More Complex Case

- Wlodek Rabinowicz (2000, p. 141) came up with a money pump that will work on someone with cyclical preferences, even if they use backwards induction
- We again assume that we meet someone with cyclical preferences, but this time we make them a complex series of conditional trades

Response: A More Complex Case

Objection 3: Seeing which way the Wind Blows

- Schick (1986) pointed out that a clever decision maker might notice that she is being money pumped, and having realised that, simply reject one of the offers
 - After we have tricked Sharon into paying 3p just to trade her sugar-free tea for another sugar-free tea, she might notice what is going on
 - At that point, she might just refuse to make another trade!
- But hold on: won't Sharon *inevitably* keep making the trades, since she always prefers the tea we are offering to trade with her?
- Not necessarily...

Objection 3: Seeing which way the Wind Blows

- Schick pointed out that all the money pump arguments rely on a tacit assumption:
 - The value that an agent places on a series of choices is the sum of the values that she places on each choice individually
 - Sharon will always pay 1p to swap sugar-free tea for a tea with one sugar, *no matter what choices she has already made*
- But it is not obvious that agents are rationally required to value series of choices in this way
 - Although Sharon is willing to pay 1p to swap teas in a one-off transaction, she might rationally be unwilling to pay 3p for a sequence of swaps which leaves her with the same cup of tea!
- A similar idea was developed by Rabinowicz (2014), and we will discuss her paper in the seminar

References

- Rabinowicz, Wlodek (2000) 'Money Pump with Foresight', in Michael J. Almeida ed., *Imperceptible Harms and Benefits*, pp. 123–154, Dordrecht: Kluwer
- (2014) 'Safeguards of a Disunified Mind', *Inquiry* 57: 356–83
- Schick (1986) 'Dutch Bookies and Money Pumps', *Journal of Philosophy* 83: 112–119