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Euclidean Geometry

Why Look at Geometry?

• Last week we compared Newtonian Spacetime to Galilean
Spacetime

• In effect, Newtonian Spacetime is a four-dimensional
Euclidean geometry

• Galilean Spacetime discards some of the structure of
Newtonian Spacetime, and so is technically a kind of
non-Euclidean geometry

• It turns out that non-Euclidean geometry is essential to much
of modern physics!



The Philosophy of Physics (2): Non-Euclidean Geometry

Euclidean Geometry

The Prehistory of Geometry

• Geometry is the theory of points, lines, planes and the
relations between them

• Geometry predates the ancient Greeks: the ancient Egyptians,
Babylonians and Chinese all had geometrical knowledge

• But before the Greeks, geometry was a collection of
rule-of-thumb procedures whose adequacy was to be assessed
empirically
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Euclid

• The Greeks deductively derived
geometry from a set of postulates

• Euclid was not the first to
contribute to this project, but he
was the most successful

• In his masterpiece, Elements
(c. 300bce), Euclid attempted to
derive 465 theorems from 5
postulates

Euclid
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Euclidean Geometry

Definitions and Common Notions

• As well as his 5 postulates, Euclid used 23 definitions

– A point is that of which there is no part

– A line is a length without breadth

– A circle is a figure contained by one line, such that all straight
lines falling upon it from one point within the figure equal one
another

• He also relied on 5 ‘common notions’

– Equals added to equals results in equals

• These common notions seem roughly analogous to what we
would call logical axioms — they are purely general, not
specifically geometrical



The Philosophy of Physics (2): Non-Euclidean Geometry

Euclidean Geometry

The Postulates of Euclidean Geometry

1 Given any two points p and q, exactly one line can be drawn
which passes through p and q

2 Any line segment can be indefinitely extended

3 A circle can be drawn with any centre and any radius

4 All right angles are congruent to each other

5 If a line l intersects two distinct lines m and n such that the
sum of the interior angles a and b is less than two right
angles, then m and n will intersect at some point
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Playfair’s Postulate

• Postulate 5 was always looked on with suspicion

• This was partly because it was quite complex, but Playfair
came up with a simpler version of the postulate:

5′ For every line l and for every point p that does not lie on l ,
there is exactly one line m that can be drawn through p that
is parallel to l

• l and m are parallel iff they do not intersect (and are on the
same plane)
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But Still...

• Plenty of mathematicians thought that Postulate 5 looked
dodgy

• Postulates 1–4 are, in a sense, abstractions from what we can
do with a straight-edge and a compass

• Postulate 5, however, does not look like such an abstraction
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But Still...

• Playfair’s Postulate tells us that if we have a given line l and
draw two more lines m and n which intersect each other at
some point, then at least one of m and n will intersect
somewhere with l

• But we might have to go a very long way down the line to
find this point of intersect

• In real life, we never really draw lines but line segments

• Postulate 5 is not true of the “lines” we draw!
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Abandoning Postulate 5

• As a result of the oddity of Postulate 5, many mathematicians
tried to derive it from Postulates 1–4

• Eventually, though, a number of mathematicians started to
explore the possibility that postulate 5 was not entailed by
postulates 1–4

• They replaced Postulate 5 with:

5H There exists a line l and point p not on l such that at least
two distinct lines parallel to l pass through p

• This geometry is called hyperbolic geometry
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A Brief History of Hyperbolic Geometry

• Gerolamo Saccheri wanted to show that Postulate 5 could be
derived from Postulates 1–4

• He published a book in 1733 called Euclid Vindicated From
Every Blemish, in which he showed that rejecting Postulate 5
leads to all sorts of odd consequences

– In hyperbolic geometry, for every line, l , and point not on l , p,
there are infinitely many lines passing through p which are
parallel to l

– In hyperbolic geometry, no figures can have the same shape
but be different sizes

– In hyperbolic geometry, there are no rectangles

• However, while these sorts of results certainly look odd to
Euclidean eyes, none of them are actually self-contradictory
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A Brief History of Hyperbolic Geometry
• János Bolyai was the first to publish a treatise on hyperbolic

geometry as its own, internally coherent kind of geometry
(1831)

• It was as an appendix to a book by his father, Wolfang Bolyai,
who had actually spent much of his life trying to derive
Postulate 5 from 1–4

• Wolfang Bolyai was so proud of his son’s work that he sent it
to the greatest mathematician of the day, Carl Gauss, who
was also Wolfang’s friend

• Gauss didn’t react as anyone expected: he claimed that he had
already reached all of János’s conclusions in unpublished work

• We now know that he wasn’t lying!
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A Brief History of Hyperbolic Geometry

• Nikolai Lobachevsky was actually the first to publish anything
on hyperbolic geometry in 1829

• At first his work was little read because it was written in
Russian, and the few Russian mathematicians who read it
criticised it fiercely

• In 1840, Lobachevsky’s work was published in German, and
was highly praised by Gauss

• Lobachevsky’s work was so influential that hyperbolic
geometry is sometimes called Lobachevskian geometry
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The Consistency of Hyperbolic Geometry

• How do we know that hyperbolic geometry is consistent?

• We can build models of hyperbolic geometry within Euclidean
geometry

• In other words, we can re-define the words ‘plane’ and ‘line’ so
that hyperbolic geometry can be made true within Euclidean
geometry
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Poincaré’s Model

• Consider a 2-dimensional circle on a Euclidean plane
———————————————————–
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Poincaré’s Model

• Add some circles which intersect the first at 90◦

————————————————————
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Poincaré’s Model

• Now reinterpret the word ‘plane’ to mean the interior of the
black circle
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Poincaré’s Model

• Reinterpret the ‘line’ to mean an arc of a circle meeting the
black perimeter at 90◦ (not including end points)
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Poincaré’s Model

• (We also count all diameters of the black circle — again not
including end points — as ‘lines’)
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Hyperbolic Geometry

Poincaré’s Model

• All the other geometrical words, like ‘point’, ‘intersect’,
‘parallel’, etc can be left as they are
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Poincaré’s Model

• We now have a model of hyperbolic geometry within
Euclidean geometry
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Poincaré’s Model

5H There exists a line l and point p not on l such that at least
two distinct lines parallel to l pass through p
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Poincaré’s Model

• We now have a model of hyperbolic geometry within
Euclidean geometry
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Using Poincaré’s Model (1)

• We can use this model to show that if Euclidean geometry is
consistent, then so is hyperbolic geometry

• It gives us a way of translating theorems of hyperbolic
geometry into theorems of Euclidean geometry

• So if the theorems of hyperbolic geometry contradicted each
other, then so would the theorems of Euclidean geometry

– This relies on a background assumption that the translation
procedure cannot turn a contradiction into something
consistent

– This is true, since we are translating primitive expressions into
complex ones, and that procedure never eliminates
contradictions
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Hyperbolic Geometry

Relative Consistency

• In modern terminology, we say that
hyperbolic geometry is consistent
relative to Euclidean geometry

• In fact, this is only one relative
consistency proof, and we can go
much further

• In Die Grundlagen der Geometrie
(1899), David Hilbert proved that
hyperbolic geometry was consistent
relative to the arithmetic of real
numbers

David Hilbert
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Using Poincaré’s Model (2)

• So one of the things we can use Poincaré’s model to do is
prove that hyperbolic geometry is consistent relative to
Euclidean geometry

• But we can also use it to illustrate the theorems of hyperbolic
geometry
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Using Poincaré’s Model (2)

• In Euclidean geometry, the sum of the interior angles of a
triangle is always 180◦
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Using Poincaré’s Model (2)

• But in hyperbolic geometry, the sum of the interior angles of a
triangle is always less than 180◦
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Using Poincaré’s Model (2)

• Although as triangles get smaller, their internal angles get
closer to 180◦
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Hyperbolic Geometry

However!

• We should not think that hyperbolic geometry is really about
a Euclidean circle that is intersected by other Euclidean circles
at 90◦

• Euclidean geometry is about the Euclidean plane and
Euclidean lines

• Hyperbolic geometry is about the hyperbolic plane and
hyperbolic lines

• It is just that we can usefully represent hyperbolic planes and
lines with Euclidean circles
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Another way of Abandoning Postulate 5

• Hyperbolic geometry rejects Postulate 5

5 For every line l and for every point p that does not lie on l ,
there is exactly one line m that can be drawn through p that is
parallel to l

• And it replaces it with:

5H There exists a line l and point p not on l such that at least
two distinct lines parallel to l pass through p
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Elliptic Geometry

Another way of Abandoning Postulate 5

• But alternatively, we could reject Postulate 5 and then replace
it with:

5E There are no parallel lines

• The best known geometry which has 5E instead 5 is called
elliptic geometry

– It is also known as Reimannian geometry, but be careful:
Reimann came up with a whole range of geometries!
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The Consistency of Elliptic Geometry

• If we just add 5E to the other four Postulates, then we
actually get a contradiction

– Postulates 1–4 entail that there are parallel lines all by
themselves!

• We can tweak the other Postulates in a number of ways to
restore consistency, but in elliptic geometry we replace 2

2 Any line segment can be indefinitely extended

with this:

2E Lines are unbounded

• The reason for making this change will become clear in a
moment
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The Consistency of Elliptic Geometry

• So these are the postulates of elliptic geometry:

1 Given any two points p and q, exactly one line can be drawn
which passes through p and q

2E Lines are unbounded
3 A circle can be drawn with any centre and any radius
4 All right angles are congruent to each other

5E There are no parallel lines

• Just like hyperbolic geometry, we can prove that elliptic
geometry is consistent relative to Euclidean geometry by
building a model of elliptic geometry within Euclidean
geometry
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The Spherical Model

• Reinterpret the word ‘plane’ to mean the surface of a sphere
————————————————————–
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The Spherical Model

• And reinterpret the word ‘line’ to mean a great circle around
the sphere
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The Spherical Model

• All the other geometrical words, like ‘point’, ‘intersect’,
‘parallel’, etc can be left as they are
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The Spherical Model

• We now have a model of elliptic geometry within Euclidean
geometry
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Using the Spherical Model (1)

2E Lines are unbounded

– Although every great circle is only finitely long, they are all
unbounded, in the sense that you can keep following them
without ever reaching an end

5E There are no parallel lines

– Every great circle intersects every other great circle
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Using the Spherical Model (2)

• One of the things that we can use the spherical model to do is
prove that elliptic geometry is consistent relative to Euclidean
geometry

• But we can also use it to illustrate the theorems of elliptic
geometry
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Using the Spherical Model (2)

• In Euclidean geometry, the sum of the interior angles of a
triangle is always 180◦
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Elliptic Geometry

Using the Spherical Model (2)

• But in elliptic geometry, the sum of the interior angles of a
triangle is always greater than 180◦
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Using the Spherical Model (2)

• Although it gets closer to 180◦ the smaller the triangle gets
——————————-
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Elliptic Geometry

However!

• We should not think that elliptic geometry is really about the
surface of a Euclidean sphere that is surrounded by various
great circles

• Euclidean geometry is about the Euclidean plane and
Euclidean lines

• Elliptic geometry is about the elliptic plane and elliptic lines

• It is just that we can usefully represent the elliptic plane and
elliptic lines with the surface of a Euclidean sphere and
Euclidean great circles
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Hyperbolic and Elliptic Geometry

• Elliptic geometry is the opposite, or dual, of hyperbolic
geometry

Hyperbolic Geometry Elliptic Geometry
There are infinitely many lines There are no

which are parallel to line l parallel lines
and which pass through point p

The interior angles of a triangle The interior angles of a triangle
sum to less than 180◦ sum to greater than 180◦

• This is not a coincidence!
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Positive and Negative Curvature

• We have already seen that we can represent the elliptic plane
with the surface of a sphere

• Spheres have what mathematicians call positive curvature

• It turns out that we can represent the hyperbolic plane with a
surface that has negative curvature
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Positive and Negative Curvature
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Positive and Negative Curvature

• Euclidean geometry is the geometry of a uniformly flat space

• Hyperbolic geometry is the geometry of a space with uniform
negative curvature

• Elliptic geometry is the geometry of a space with a uniform
positive curvature

– IMPORTANT: When we describe hyperbolic and elliptic
geometries in these ways, we do not have to imagine the
spaces they are describing as being embedded in a larger,
Euclidean space

– For a helpful introduction, see: Dainton (2010) Time and
Space, Chapter 13
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Variable Curvature

• Euclidean, hyperbolic and elliptic geometry all deal with
spaces that have a uniform curvature (or lack thereof)

• We can also deal with spaces which are variably curved:
perhaps very positively in some places, flat in others, negative
in still others

• The mathematics required for all this was invented by Gauss
and Riemann in the 19th Century
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General Relativity and Variable Curvature

Courtesy of NASA

• It turns out that this mathematics is absolutely crucial to the
General Theory of Relativity, which we will come to in Lecture
7
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Which Geometry is Right?

• We have seen that there is a range of different, internally
consistent geometries

• Which one is right?

• When it comes to pure geometry, this seems like a silly
question

– There is no such thing as the right geometry in this sense,
there are just lots of different, equally coherent geometries

• But things seem different when we are dealing with applied
geometry, i.e. the geometry of the space we actually live in

• It is tempting to say that this is an empirical question, to be
answered by empirical investigation
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Gauss’ Thesis that Geometry is Empirical

I am becoming more and more convinced that the [phys-
ical] necessity of our [Euclidean] geometry cannot be
proved, at least not by human reason nor for human rea-
son. Perhaps in another life we will be able to obtain
insight into the nature of space, which is now unattain-
able. Until then we must place geometry not in the same
class with arithmetic, which is purely a priori, but with
mechanics.

Gauss, letter to Olbers 1817
Quoted in Kline 1972 p. 872
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Gauss’ Thesis that Geometry is Empirical

• Gauss is reputed to have tried to test Euclidean geometry by
measuring a triangle defined by the peaks of three distant
mountains

• This triangle would have been nowhere near large enough to
provide a real test

• But we can conceive of other tests, for example we could
consider a triangle with Earth at one point, and two distant
stars at the other two

– See Robertson’s (1949) for a discussion of Schwarzschild’s
parallax experiment
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Poincaré’s Thesis that Geometry is Conventional

• However, this way of thinking about applied geometry was
forcefully rejected by Poincaré

• There is no objective matter of fact about the geometry of
physical space

• Geometry depends on our conventional choices about how we
shall measure

– What shall we count as a ‘straight line’?

– What shall we count as ‘equals’?

• We can choose a geometry on the basis of convenience
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Poincaré’s Disk World
• Imagine that a species of flat people are living on a

2-dimensional, finite disk with radius R

• The disk has a temperature that systematically affects the
lengths of all bodies

• The centre of the disk has temperature T , and everywhere
else the temperature is calculated as follows:

T (R2 − r2), where r is the distance from the centre

• Measuring rods (and everything else) contract as temperature
decreases, and they go all the way to length 0 at the edge
where the temperature is 0

• Light is similarly affected, so that it is impossible to tell that
things get smaller as we move towards the edge of the disk
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Poincaré’s Disk World

• The people living in this story would essentially be living in
the model of hyperbolic geometry that we discussed earlier

• Because of the way that their measuring instruments shrink,
they would think that curved lines are straight

• And when they measure the interior angles of a triangle, their
instruments would tell them that those angles add up to less
than 180◦
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Poincaré’s Disk World

• Now, in this story, we know that the people living on this disk
are wrong

• They think that they live in an infinitely large hyperbolic
space, but we know that they really live in a finitely large
Euclidean space

• They are just being misled by some weird laws of nature
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Poincaré’s Disk World

• But we can only say all this because of our position outside of
their universe

• From within their universe, it would be impossible to tell
whether they were living in a hyperbolic space, or a Euclidean
one with weird physical effects

• So, Poincaré concluded, their choice of geometry is a matter
of convention, of which convention is simplest for them to
work with
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Poincaré’s Disk World

• The people in the Disk World can choose either of the
following conventions

• Convention 1: Our measuring rods (etc) remain the same
size as we move around

– Thus we must be living in a non-Euclidean, hyperbolic space

• Convention 2: We live in a Euclidean space

– Thus our measuring rods must be changing shape as we move
around
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Poincaré’s Disk World

• Their choice of convention will have implications for what
they take to be straight lines, and whether they think that two
lines are the same length

• If the Disk People choose Euclidean space, they will no longer
count the ‘curved’ paths that light takes as straight lines

• Lines that were considered the same length will now be
considered different lengths if one of them is closer to the
perimeter than the other
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What About Us?
• What goes for the Disk People goes for us

• We cannot look at our space from an external God’s eye point
of view, and no experiment we can perform will tell us what
the geometry of our space is

– It’s always an open possibility that some weird law of nature is
making our measuring instruments change shape!

• So all we can do is make a choice about which geometry to
use

• This is not a completely unconstrained choice: we should
choose the geometry that is the simplest, and easiest to use in
our universe

• But it is still a conventional choice!
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What About Us?

• Or at least, that is what Poincaré thought

• We’ll discuss that further in the seminar!
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Seminar Reading

• For the seminar, please read:

– Poincaré, Space and Geometry and Experiment and Geometry

– Ben-Menahem, ‘Convention: Poincaré and some of his critics’

• Both are available via the Reading List on the VLE
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