Intermediate Logic Lecture Seven

Natural Deduction for FOL

Rob Trueman rob.trueman@york.ac.uk

University of York

Natural Deduction for FOL

Introducing Natural Deduction for FOL

Universal Elimimation

Existential Introduction

Universal Introduction

Existential Elimination

Reasoning about all Interpretations

- Reasoning about interpretations is great when we want to show that some argument is **not** valid in FOL, or that some sentence is **not** a logical truth
 - All we have to do is come up with a single counter-interpretation
- But when we want to show that an argument is valid in FOL, or a sentence is a logical truth, then they are a lot less helpful
 - To show that ${\cal A}$ is a logical truth, we must somehow show that it is true in all interpretations

Reasoning about all Interpretations

- It is sometimes possible to reason about *all* interpretations, but it is usually **very** hard
- There certainly is not any mechanical method for searching through interpretations (whereas there was a mechanical method for searching through TFL valuations)
- As a result, it is not very practical to use interpretations to show that an argument is valid in FOL, or that a sentence is a logical truth
- Instead, we need to use a different method: formal proofs!

Building on TFL Proofs

- This week and next, we will look at how to construct proofs in FOL
- When proving things in FOL, we will use **all** of the rules that we used in TFL
 - That includes basic and derived rules!
- All we need to do is add some extra rules to the system
 - This week we will add the basic rules for the quantifiers
 - Next week we will add some extra derived rules, plus the basic rules for identity

Introduction and Elimination

- Just like the connectives of TFL, each quantifier is governed by an **Introduction Rule** and an **Elimination Rule**
- Annoyingly, both quantifiers have an easy rule and a hard rule
 - The Introduction Rule for \exists is easy, but the Elimination Rule is hard
 - The Elimination Rule for \forall is easy, but the Introduction Rule is hard
- We will start with the easy rules, and then look at the harder ones later

Natural Deduction for FOL

Introducing Natural Deduction for FOL

Universal Elimimation

Existential Introduction

Universal Introduction

Existential Elimination

...

What can You Infer from a Universal Generalisation?

- Suppose you knew that the following universal generalisation is true:
 - Everyone loves Intermediate Logic
- You could then infer that this generalisation holds of each individual person
 - Natasha loves Intermediate Logic
 - George loves Intermediate Logic
 - Hazel loves Intermediate Logic

• This leads us to our Universal Elimination Rule

Universal Elimination

$$\begin{array}{c|c} m & \forall \chi \mathcal{A}(\dots \chi \dots \chi \dots) \\ & \mathcal{A}(\dots c \dots c \dots) & \forall \mathsf{E}, \ m \end{array}$$

- A(...χ...χ...) is a formula containing one or more occurrences of some variable χ
- c can be any name you like
- A(...c...) is the result of replacing all of the occurrences of *χ* in A(...*χ*...*χ*...) with c

8	∀xRax	
15	Rab	∀E, 8

8	∀yRay	
15	Rab	∀E, 8

8
$$\forall x(Fx \rightarrow (Rax \lor Gb))$$

... ...
15 $Fa \rightarrow (Raa \lor Gb)$ $\forall E, 8$

8
$$\forall x(Fx \rightarrow (Rax \lor Gb))$$

... ...
15 $Fb \rightarrow (Rab \lor Gb)$ $\forall E, 8$

8
$$\forall x(Fx \rightarrow (Rax \lor Gb))$$

... ...
15 $Fc \rightarrow (Rac \lor Gb)$ $\forall E, 8$

A Bad Example

8
$$\forall x(Fx \rightarrow (Rax \lor Gb))$$

... ...
15 $Fc \rightarrow (Rax \lor Gb)$ $\forall E, 8$

• This is a *bad* example of Universal Elimination, because we replaced some but **not all** of the 'x's with 'c's

Two Universal Eliminations

1	$\forall x \forall y Rxy$	
2	∀yRay	$\forall E, 1$
3	Rab	∀E, 2

Not One Double Elimination!

$$\begin{array}{c|cccc}
1 & \forall x \forall y Rxy \\
2 & Rab & \forall E, 1
\end{array}$$

Two Universal Eliminations!!!

1	$\forall x \forall y Rxy$	
2	∀yRay	$\forall E, 1$
3	Rab	∀E, 2

Natural Deduction for FOL

Introducing Natural Deduction for FOL

Universal Elimimation

Existential Introduction

Universal Introduction

Existential Elimination

How would You Prove an Existential Generalisation?

- Imagine you wanted to prove that an existential generalisation was true, for example:
 - Someone loves Intermediate Logic
- A really excellent way of doing this would be by first proving that this generalisation is true of some particular person
 - If you first proved that Noah loves *Intermediate Logic*, you could then infer that *someone* loves *Intermediate Logic*
- This motivates our Existential Introduction rule

Existential Introduction

$$\begin{array}{c|c} m & \mathcal{A}(\dots c \dots c \dots) \\ n & \exists \chi \mathcal{A}(\dots \chi \dots c \dots) & \exists I, m \end{array}$$

- $\mathcal{A}(...c...c...)$ is a sentence containing **one or more** occurrences of the name *c*
- χ can be any variable that does **not** occur in $\mathcal{A}(...c...)$
- A(...χ...c...) is the result of replacing one or more of the occurrences of c in A(...c...c...) with the variable χ

8Raba......15
$$\exists x Rabx$$
 $\exists I, 8$

8	Raba	
15	∃z Rzbz	∃I, 8

8
$$Pa \rightarrow (Fb \lor \neg Sac)$$

... ...
15 $\exists x(Px \rightarrow (Fb \lor \neg Sac))$ $\exists I, 8$

8
$$Pa \rightarrow (Fb \lor \neg Sac)$$

... ...
15 $\exists x(Pa \rightarrow (Fb \lor \neg Sxc))$ $\exists I, 8$

8
$$Pa \rightarrow (Fb \lor \neg Sac)$$

... ...
15 $\exists x(Px \rightarrow (Fb \lor \neg Sxc))$ $\exists I, 8$

8
$$Pa \rightarrow (Fb \lor \neg Sac)$$

... ...
15 $\exists y(Py \rightarrow (Fb \lor \neg Syc))$ $\exists I, 8$

8
$$Pa \rightarrow (Fb \lor \neg Sac)$$

... ...
15 $\exists z(Pz \rightarrow (Fb \lor \neg Szc))$ $\exists I, 8$

A Bad Example

8
$$Pa \rightarrow (Fb \lor \neg Sac)$$

... ...
15 $\exists z(Pz \rightarrow (Fz \lor \neg Szc))$ $\exists I, 8$

• This is a *bad* example of Existential Introduction, because we replaced **two different names** (*'a'* and *'b'*) with the same variable

Two Existential Introductions

1Rab2
$$\exists y Ray$$
 $\exists I, 1$ 3 $\exists x \exists y Rxy$ $\exists I, 2$

Not One Double Introduction!

$$\begin{array}{c|cc}
1 & Rab \\
2 & \exists x \exists y Rxy & \exists I, 1
\end{array}$$

Two Existential Introductions!!!

1Rab2
$$\exists y Ray$$
 $\exists I, 1$ 3 $\exists x \exists y Rxy$ $\exists I, 2$

Natural Deduction for FOL

Introducing Natural Deduction for FOL

Universal Elimimation

Existential Introduction

Universal Introduction

Existential Elimination

How would You Prove a Universal Generalisation?

- Imagine you wanted to prove that a universal generalisation was true, for example:
 - Everyone loves Intermediate Logic
- One idea would be to go through everyone in the domain, and prove that the generalisation is true of each of them:
 - Will loves Intermediate Logic
 - Emma loves Intermediate Logic
 - Joshua loves Intermediate Logic

• That is a bit longwinded and impractical, but it works well enough in this case, since we are working with a finite domain

How would You Prove a Universal Generalisation?

- But now suppose you wanted to prove a universal generalisations about **infinitely** many things
 - Every number is either odd or even
- You definitely couldn't do **that** by going through all of the numbers one by one!
- But there is another way:
 - Start by letting a be an arbitrary number
 - Then prove of *a* that it is either odd or even
 - Then conclude that since a was just an arbitrarily chosen number, every number must be odd or even
- This leads us to our Universal Introduction Rule

Universal Introduction

$$\begin{array}{c|c} m & \mathcal{A}(\dots c \dots c \dots) \\ n & \forall \chi \mathcal{A}(\dots \chi \dots \chi \dots) & \forall \mathsf{I}, m \end{array}$$

- A(...c...c...) is a sentence containing one or more occurrences of the name c, and A(...χ...χ...) is the formula that you get when you replace all of those occurrences of c with the variable χ
- *c* **must not** occur in any undischarged assumptions above line *n* (including the premises of the argument)
- *c* must not occur in $\forall \chi \mathcal{A}(...\chi...\chi...)$

A Good Example

A Bad Example

1
$$\forall x Rxa$$
2Raa $\forall E, 1$ 3 $\forall x Rxx$ $\forall I, 2$

- This is a bad argument because 'a' appeared in an undischarged assumption (line 1)
- In this case, we made a background assumption about a, and so a isn't really an arbitrary object!

Another Bad Example

1
$$\forall x Rxx$$
2Raa $\forall E, 1$ 3 $\forall y Ray$ $\forall I, 2$

• This is a bad argument because we only replaced **some** occurrences of 'a' with 'y'

A Good Example (Again!)

1
$$\forall x Rxx$$
2Raa3 $\forall y Ryy$ $\forall I, 2$

- This is a bad argument because we only replaced some occurrences of 'a' with 'y'
- If we replaced **all** of the occurrences of '*a*' with '*y*', the inference would've been trivial, but fine

Two Universal Introductions

Fa	
Fa	R, 1
Fa ightarrow Fa	ightarrowI, 1–2
Gb	
Gb	R, 4
Gb ightarrow Gb	ightarrowI, 4–5
$(\mathit{Fa} ightarrow \mathit{Fa}) \land (\mathit{Gb} ightarrow \mathit{Gb})$	∧I, 3, 6
$\forall y ((\mathit{Fa} ightarrow \mathit{Fa}) \land (\mathit{Gy} ightarrow \mathit{Gy}))$	∀I, 7
$\forall x \forall y ((Fx \rightarrow Fx) \land (Gy \rightarrow Gy))$	∀I, 8
	$ \begin{array}{c c} Fa \\ Fa \\$

Not One Double Introduction!

1	Fa	
2	Fa	R, 1
3	Fa ightarrow Fa	ightarrowl, 1–2
4	Gb	
5	Gb	R, 4
6	Gb ightarrow Gb	ightarrowI, 4–5
7	$(\mathit{Fa} ightarrow \mathit{Fa}) \land (\mathit{Gb} ightarrow \mathit{Gb})$	∧I, 3, 6
8	$\forall x \forall y ((Fx \rightarrow Fx) \land (Gy \rightarrow Gy))$	∀I, 7

Two Universal Introductions!!!

1	Fa	
2	Fa	R, 1
3	Fa ightarrow Fa	ightarrowI, 1–2
4	Gb	
5	Gb	R, 4
6	Gb ightarrow Gb	ightarrowI, 4–5
7	$(\mathit{Fa} ightarrow \mathit{Fa}) \land (\mathit{Gb} ightarrow \mathit{Gb})$	∧I, 3, 6
8	$\forall y ((Fa ightarrow Fa) \land (Gy ightarrow Gy))$	∀I, 7
9	$\forall x \forall y ((Fx \rightarrow Fx) \land (Gy \rightarrow Gy))$	∀I, 8

Intermediate Logic (7): Natural Deduction for FOL Lexistential Elimination

Natural Deduction for FOL

Introducing Natural Deduction for FOL

Universal Elimimation

Existential Introduction

Universal Introduction

Existential Elimination

What can You Infer from an Existential Generalisation?

- Suppose that you knew the following universal generalisation is true:
 - Someone loves Intermediate Logic
- You could not infer that that this generalisation holds of any particular person
 - It might be Charlie who loves *Intermediate Logic*, or it might be April, or it might be Kishori...
- So what could you infer?

What can You Infer from an Existential Generalisation?

- You could argue like this:
 - Suppose that April loves Intermediate Logic
 - Given that April loves *Intermediate Logic*, she must be attending all the lectures
 - The same would go for anyone else, if they loved *Intermediate* Logic
 - So even if I drop my supposition that April loves *Intermediate Logic*, since I do know that someone loves it, there must be someone who is attending all the lectures
- This motivates our Existential Elimination Rule

Existential Elimination

$$\begin{array}{c|c} m & \exists \chi \mathcal{A}(\dots \chi \dots \chi \dots) \\ n & & & \\ o & & & \\ \mathcal{B} & & \\$$

- *c* **must not** occur in any undischarged assumptions above line *n* (including the premises of the argument)
- *c* **must not** occur in $\exists \chi \mathcal{A}(...\chi...\chi...)$
- *c* must not appear in *B*

Intermediate Logic (7): Natural Deduction for FOL Lexistential Elimination

Existential Elimination

$$\begin{array}{c|c} m & \exists \chi \mathcal{A}(\dots \chi \dots \chi \dots) \\ n & & & \\ o & & & \\ \mathcal{B} & & \\$$

- c must not appear in any line before m
- c must not appear in \mathcal{B}

An Example

•
$$\exists x Rax, \forall y (Ray \rightarrow Fy) \therefore \exists z Fz$$

1
$$\exists x Rax$$

2 $\forall y (Ray \rightarrow Fy)$
3 $\begin{vmatrix} Rab \\ Rab \rightarrow Fb \\ \forall E, 2 \\ 5 \\ Fb \\ \exists zFz \\ \exists I, 5 \\ 7 \\ \exists zFz \\ \exists E, 1, 3-6 \\ \end{vmatrix}$

Intermediate Logic (7): Natural Deduction for FOL Lexistential Elimination

A Bad Example!

1
$$\exists x Rax$$

2 $\forall y (Ray \rightarrow Fy)$
3 $\begin{vmatrix} Rab \\ Rab \rightarrow Fb \\ Fb \\ \Rightarrow E, 4, 3$
6 $Fb \\ \exists E, 1, 3-5$

• This is a bad argument because line 5 contains the name *b*, which is the name we introduced at line 3

Another Bad Example!

1
$$\exists x Rax$$
2 $\forall y (Ray \rightarrow Fy)$ 3 Raa 4 $Raa \rightarrow Fa$ 5 $Fa \rightarrow Fa$ 6 $Fa \wedge Raa$ 7 $\exists x (Fx \wedge Rxx)$ 8 $\exists x (Fx \wedge Rxx)$ 3 $\exists E, 1, 3-7$

• This is a bad proof, because the name we introduced at line 3 already appeared in lines 1 and 2

Two Existential Eliminations

1	$\exists x \exists y R x y$			
2	$\forall x \forall y (Rxy ightarrow Gy)$			
3	∃yRay			
4		Rab		
5		$\forall y(Ray ightarrow Gy)$	∀E, 2	
6		Rab o Gb	∀E, 5	
7		Gb	ightarrowE, 6, 4	
8		∃xGx	∃I, 7	
9	L I	KGX	∃E, 3, 4–8	
10	∃xGx		∃E, 1, 3–9	

Not One Double Elimination!

1	$\exists x \exists y R x y$		
2	$\forall x \forall y (Rxy \rightarrow Gy)$		
3	Rab		
4	$orall y(extsf{R} extsf{a} y o extsf{G} y)$	∀E, 2	
5	${\it Rab} ightarrow {\it Gb}$	∀E, 4	
6	Gb	\rightarrow E, 5, 3	
7	$\exists x G x$	∃I, 6	
8	∃xGx	∃E, 1, 3–7	

Two Existential Eliminations!!!

1	$\exists x \exists y R x y$			
2	$\forall x \forall y (Rxy ightarrow Gy)$			
3	∃yRay			
4		Rab		
5		$\forall y(Ray ightarrow Gy)$	∀E, 2	
6		Rab o Gb	∀E, 5	
7		Gb	ightarrowE, 6, 4	
8		∃xGx	∃I, 7	
9	(E 3	«Gx	∃E, 3, 4–8	
10	∃xGx		∃E, 1, 3–9	

Re-Introducing the Single Turnstile

- We will continue to use the single turnstile, '⊢' to express provability
 - It is possible to construct a proof which starts with $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_n$ as premises, and ends with \mathcal{C} as the conclusion
 - $\ \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n \vdash \mathcal{C}$
 - It is possible to construct a proof which doesn't have any premises, and ends with ${\cal C}$ as the conclusion

 $-\vdash \mathcal{C}$

• But now we can use the rules for quantifiers as well as all the rules you learnt for TFL

Intermediate Logic (7): Natural Deduction for FOL Lexistential Elimination

Exercises

• Provide a proof for each of the following:

1.
$$\vdash \forall z (Pz \lor \neg Pz)$$

2. $\forall x (Ax \to Bx), \exists xAx \vdash \exists xBx$
3. $\forall x (Mx \leftrightarrow Nx), Ma \land \exists xRxa \vdash \exists xNx$
4. $\forall x (\neg Mx \lor Ljx), \forall x (Bx \to Ljx), \forall x (Mx \lor Bx) \vdash \forall xLjx$
5. $\forall x \forall y Gxy \vdash \exists x Gxx$