Intermediate Logic (5): Interpretations

Intermediate Logic Lecture Five

Interpretations

Rob Trueman rob.trueman@york.ac.uk

University of York

Exercises!

1.
$$R \lor (\neg Q \land \neg S), \ \neg R \to (Q \lor S) \vdash (R \lor S) \lor Q$$

2. $\neg P \leftrightarrow Q \vdash (P \lor Q) \land \neg (P \land Q)$
3. $\vdash \neg ((P \to Q) \to P) \lor P$

Interpretations

FOL: Syntax

Interpretations: The Indirect Method

Interpretations: The Direct Method

FOL: Semantics

Atomic Sentences

- You can make an atomic sentence by combining an *n*-adic predicate with *n* names
 - F^1a ; R^2ab ; S^3abc

• You can also make an atomic sentence by putting two names either side of the identity sign

-a=b

The Truth-Functional Connectives

- You can use the truth-functional connectives to make new sentences out of old ones
 - If ${\mathcal A}$ is a sentence, then $\neg {\mathcal A}$ is a sentence
 - If $\mathcal A$ and $\mathcal B$ are both sentences, then $\mathcal A\wedge \mathcal B$ is a sentence
 - If $\mathcal A$ and $\mathcal B$ are both sentences, then $\mathcal A \vee \mathcal B$ is a sentence
 - If $\mathcal A$ and $\mathcal B$ are both sentences, then $\mathcal A o \mathcal B$ is a sentence
 - If $\mathcal A$ and $\mathcal B$ are both sentences, then $\mathcal A\leftrightarrow \mathcal B$ is a sentence

From Sentences to Formulae

- You can make a formula out of a sentence by replacing one or more names with variables
 - $F^1 a \Rightarrow F^1 x$
 - $R^2 ab \Rightarrow R^2 xb$
 - $R^2 ab \Rightarrow R^2 ax$
 - $R^2 ab \Rightarrow R^2 xy$
- These formulae are not sentences; they do not mean anything as they stand

From Formulae to Sentences

- You can turn a formula back into a sentence by adding quantifiers at the front which "bind" all of the variables in the formula
 - $F^1 a \Rightarrow \exists x F^1 x$
 - $R^2 ab \Rightarrow \forall x R^2 x b$
 - $R^2 ab \Rightarrow \forall x R^2 ax$
 - $R^2 ab \Rightarrow \exists x \forall y R^2 x y$
- A bound variable is an occurrence of a variable *χ* that is within the scope of ∀*χ* or ∃*χ*
 - 'x' is bound in ' $\forall x Rxy$ ', but the 'y' is free
 - The first 'y' is bound in ' $\exists y Fy \land Gy$ ', but the second 'y' is free
- A variable is **free** iff it is not bound; sentences do not contain *any* free variables

- The **scope** of a logical operator in a formula is the subformula for which that operator is the main logical operator
- The **main logical operator** of a formula is the last operator that was used in the construction of that formula
- It is the operator which governs, or controls, the whole formula
- In TFL, the main logical operator was always a connective; now it can be a connective or a quantifier

- Here is how to find the main logical operator in a formula:
 - First, make sure you have included *all* the brackets, even the ones you can normally get away with omitting
 - Now check if the first symbol in the formula is '¬'; if so, then that '¬' is the main logical operator
 - If not, then check if the first symbol in the formula is a quantifier; if so, then that quantifier is the main logical operator
 - If the first symbol isn't a '¬' or a quantifier, then starting counting brackets. Open-brackets '(' are worth +1, close-brackets ')' are worth -1. The first connective you hit which isn't a '¬' or a quantifier when your count is at exactly 1 is the main logical operator
- An example:
 - $\exists x \neg (Fx \land Gx) \rightarrow \forall y \neg Fy$

- Here is how to find the main logical operator in a formula:
 - First, make sure you have included *all* the brackets, even the ones you can normally get away with omitting
 - Now check if the first symbol in the formula is '¬'; if so, then that '¬' is the main logical operator
 - If not, then check if the first symbol in the formula is a quantifier; if so, then that quantifier is the main logical operator
 - If the first symbol isn't a '¬' or a quantifier, then starting counting brackets. Open-brackets '(' are worth +1, close-brackets ')' are worth -1. The first connective you hit which isn't a '¬' or a quantifier when your count is at exactly 1 is the main logical operator
- An example:

$$- (\exists x \neg (Fx \land Gx) \rightarrow \forall y \neg Fy)$$

- Here is how to find the main logical operator in a formula:
 - First, make sure you have included *all* the brackets, even the ones you can normally get away with omitting
 - Now check if the first symbol in the formula is '¬'; if so, then that '¬' is the main logical operator
 - If not, then check if the first symbol in the formula is a quantifier; if so, then that quantifier is the main logical operator
 - If the first symbol isn't a '¬' or a quantifier, then starting counting brackets. Open-brackets '(' are worth +1, close-brackets ')' are worth -1. The first connective you hit which isn't a '¬' or a quantifier when your count is at exactly 1 is the main logical operator
- An example:

$$- (_1 \exists x \neg (_2 Fx \land Gx)_1 \rightarrow \forall y \neg Fy)_0$$

Intermediate Logic (5): Interpretations

Interpretations

FOL: Syntax

Interpretations: The Indirect Method

Interpretations: The Direct Method

FOL: Semantics

What is a Semantics?

- The aim of this lecture is to present a semantics for FOL
- You can think of a **semantics** as a method for assigning *truth-values* to sentences of arbitrary complexity
- You already know how the semantics for TFL works
 - You assign truth-values however you like to the atomic sentences, i.e. you give a valuation
 - Then you use the truth-tables to figure out what truth-values the more complex sentences get on that valuation
- What we need now is a method for assigning truth-values to the sentences of FOL

Introducing Interpretations

- The first thing we need to do is find a way of giving meaning to the building blocks of our sentences
- In TFL, that was just a matter of assigning truth-values to the atomic sentences, but now we have split the atoms into sub-sentential bits:
 - Names; Predicates; Quantifiers
- So what we need to do is fix the meanings of these bits:
 - We need to pick objects for the names to refer to
 - We need to pick extensions for the predicates to be true of
 - We need to pick a domain for the quantifiers to quantify over
- We call a specification of all these things an interpretation

Intermediate Logic (5): Interpretations

Names

- Each name we are dealing with must be assigned something to refer to
- We can specify what each name is referring to like this:
 - c: Chris Jay
 - I: Louise Richardson
 - m: Mary Leng
- So far, this looks exactly like a symbolisation key!

Predicates

- Each predicate must be assigned an extension
 - A predicate's $\ensuremath{\text{extension}}$ is the collection of things it is true of
- Again, we can achieve this with a symbolisation key:
 - W: ____ is wise
 - *R*: $__1$ respects $__2$
 - $P: __1$ mentioned $__2$ to $__3$
- You should understand these entries like this:

`W' is to have the same extension as the English predicate '___ is wise'

'R' is to have the same extension as the English predicate '__1 respects __2'

'P' is to have the same extension as the English predicate ' $__1$ mentioned $__2$ to $__3$ '

Intermediate Logic (5): Interpretations

The Exception: Identity

- I just said that you have to assign an extension for every predicate you are dealing with, but there is one exception
- You do not need to specify an extension for the identity sign, '='
- '=' always means *identity* on every extension
 =: ___1 is identical to ___2

Intermediate Logic (5): Interpretations

Domains

- Every interpretation needs to include a specification of the domain of quantification
- The domain can contain anything you like
- We can specify our domain like this:
 - domain: people in York
- It is important to remember that the domain **must** contain every object referred to by a name on the interpretation!

Symbolisation Keys as Interpretations

- An interpretation is a specification of these three things:
 - (1) The referent of each name we are dealing with
 - (2) The extension of each predicate we are dealing with
 - (3) The domain of quantification
- Clearly, then, writing out a symbolisation key is one way of presenting an interpretation
- But it is not the only way!

Interpretations

FOL: Syntax

Interpretations: The Indirect Method

Interpretations: The Direct Method

FOL: Semantics

Direct versus Indirect

- Symbolisation keys specify a predicate's extension only indirectly
- A symbolisation key does not actuall tell you what is in the extension of a predicate
- It just tells us that a certain FOL predicate has the same extension as an English predicate

W: ____ is wise

`W' is to have the same extension as the English predicate '___ is wise'

• Sometimes it is more useful to specify a predicate's extension directly

The Direct Method

- The direct method is just to list the objects that are to be in the extension of a given predicate
- You can pick any objects you like: they do not need to have anything in common

H: Danny DeVito, the number π , Einstein's Nobel Prize

- Sometimes we want to use **empty** predicates, i.e. predicates which are not true of anything
- If you are stipulating extensions directly, and want 'P' to be empty, just write:

Two-Place Predicates

• If you want to directly stipulate an extension for a **two-place** predicate, then you do it like this:

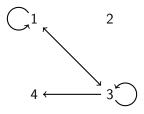
R: $\langle \text{Danny DeVito}, \pi \rangle$, $\langle \pi, \text{Einstein's Nobel Prize} \rangle$

- The idea is that '*R*' is true of each pair of objects, in the order they have been written
- We extend this to predicates with more gaps in the obvious way

 P^3 : (Danny DeVito, π , Einstein's Nobel Prize)

Diagrams

• Some people like to think in diagrams; if you are like that, then you can directly stipulate an extension for a two-place predicate with a diagram:



$$\textit{R: } \langle 1,1\rangle, \, \langle 1,3\rangle, \, \langle 3,1\rangle, \, \langle 3,3\rangle, \, \langle 3,4\rangle$$

Using Numbers

- In that last example, I used numbers as the objects in the extension of '*R*'
- It is *very* common practice to use numbers when directly stipulating the extension of a predicate
- If you are using the direct method to specify the extension of a predicate, I recommend that you use numbers too

Domains and the Direct Method

• You can also specify the domain of an interpretation directly:

domain: Danny DeVito, Micahel Keaton, π , Einstein's Nobel Prize

 It is important to remember that the domain must contain every object referred to by some name on the interpretation!

Putting it All Together

domain: 0, 1

- a: 0
- b: 1
- c: 1

F: 0, 1 G: 1 R: (0,1), (1,0) H^1 : S^2 :

Interpretations

FOL: Syntax

Interpretations: The Indirect Method

Interpretations: The Direct Method

FOL: Semantics

Three Kinds of Sentence

- We want to see how we can use an interpretation to assign truth-values to the sentences of FOL
- There are three kinds of sentence:
 - Atomic sentences
 - Sentences whose main logical operator is a sentential connective
 - Sentences whose main logical operator is a quantifier
- We will look at each kind of sentence one by one

Our Example Interpretation

domain: all people born before $2000 \mathrm{CE}$

- h: Tom Holland
- g: Lady Gaga
- S: ____ is a singer
- *B*: $__1$ was born before $__2$

Atomic Sentences

- Let \mathcal{R}^n be an *n*-place predicate, and $a_1, a_2, ..., a_n$ be names
 - $\mathcal{R}^n a_1 a_2, ..., a_n$ is true in an interpretation iff \mathcal{R} is true of the objects named by $a_1, a_2, ..., a_n$ in that interpretation (in that order)
- Exercise: Which of these atomic sentences are true on our Example Interpretation?
 - (1) Sh
 - (2) Sg
 - (3) Bhg
 - (4) Bgh

Identity

- It is worth recalling at this point that the identity sign, '=' is forced to express *identity* in every interpretation
- So if a and b are names, we can say:
 - a = b is true in an interpretation iff a and b name the very same object in that interpretation

Sentential Connectives

- $\neg \mathcal{A}$ is true in an interpretation iff \mathcal{A} is not true in that interpretation
- $\mathcal{A} \wedge \mathcal{B}$ is true in an interpretation iff \mathcal{A} is true in that interpretation and \mathcal{B} is true in that interpretation
- A ∨ B is true in an interpretation iff A is true in that interpretation or B is true in that interpretation (or both)
- *A* → *B* is true in an interpretation iff *A* is false in that interpretation or *B* is true in that interpretation (or both)
- $\mathcal{A} \leftrightarrow \mathcal{B}$ is true in an interpretation iff \mathcal{A} and \mathcal{B} have the same truth-value in that interpretation

Quantifiers: Some False Starts

- It turns out to be a bit tricky to say how to assign truth-values to sentences whose main logical operator is quantifier
- You want to say something like this:
 - ' $\forall x S x$ ' is true in an interpretation iff 'S' is true of everything in the domain of that interpretation
- That works great when we have just put a quantifier together with a predicate, but what about examples like the following?
 - ' $\forall x(Sx \rightarrow Bxh)$ ' is true on an interpretation iff ' $Sx \rightarrow Bxh$ ' is true of everything in the domain of that interpretation
- That won't work: our interpretation only assigns extensions to predicate letters, not to complex formulae like 'Sx → Bxh'

Quantifiers: Some False Starts

- You might instead suggest this:
 - ' $\forall x(Sx \rightarrow Bxh)$ ' is true iff ' $Sa \rightarrow Bah$ ' is true, for *every* name *a* that we have included in our interpretation
- The trouble is, this doesn't work if there are some things in the domain which are not named
 - The domain of our Example Interpretation is everyone who is born before $2000 \mathrm{CE}$
 - ' $\forall x(Sx \rightarrow Bxh)$ ' clearly shouldn't be true on that interpretation
 - But 'Sg \rightarrow Bgh' and 'Sh \rightarrow Bhh' are both true, and 'g' and 'h' are the only names in our interpretation

Quantifiers: The Fundamental Idea

- Although 'g' and 'h' are the only names in our Example Interpretation, we **could** add another, 'c'
- We could use 'c' to name any object we liked in the domain
- This leads us to a very good idea:
 - Imagine all the ways of extending our interpretation by adding the name 'c' and picking an object for it to refer to
 - If ' $Sc \rightarrow Bch$ ' would come out true on *all* of these different ways of extending the Example Interpretation, then ' $\forall x(Sx \rightarrow Bxh)$ ' is true on the Example Interpretation
 - ' $Sc \rightarrow Bch$ ' would come out false if 'c' named Lewis Capaldi, so ' $\forall x(Sx \rightarrow Bxh)$ ' is not true on the Example Interpretation

Quantifiers: Working towards the Rigorous Definition

• Suppose that \mathcal{A} is a formula containing at least one instance of the variable χ , and that χ is free in \mathcal{A}

 $- \mathcal{A}(...\chi...\chi...)$

• We will then write the result of replacing **every** occurrence of χ with a name *c* like this:

- A(...c...)

- An example:
 - $(Fx \land Ga) \rightarrow Rxa$
 - (Fb \land Ga) \rightarrow Rba

Quantifiers: The Rigorous Definition

- Let *c* be a new name added to the language
- ∀*χ*A(...*χ*...*χ*...) is true in an interpretation iff A(...*c*...*c*...) is true in *every* interpretation that extends the original interpretation by assigning an object to *c* (without changing the interpretation in any other way)
- ∃*χ*A(...*χ*...*χ*...) is true in an interpretation iff A(...*c*...*c*...) is true in *some* interpretation that extends the original interpretation by assigning an object to *c* (without changing the interpretation in any other way)

Exercises!

• Consider the following interpretation:

domain: Thor and the Hulk

- h: the Hulk
- A: Thor, the Hulk
- N: Thor
- S: $\langle \text{the Hulk}, \text{Thor} \rangle$
- What is the truth-value of the following sentences on this interpretation?
 - 1. $Ah \wedge Nh$
 - 2. ∀*y*A*y*
 - 3. $\exists x (Ax \land Nx)$
 - 4. $\forall x(Shx \rightarrow Nx)$
 - 5. $\exists x \forall y (Sxy \leftrightarrow Ny)$
 - 6. $\forall x \exists y (Ax \land Ny)$

Exercises!

- Consider the following interpretation:
 - domain: 0, 1, 2 a: 2 b: 1 F: 0, 2 G: 0 R: $\langle 0, 0 \rangle, \langle 1, 2 \rangle, \langle 2, 0 \rangle$
- What is the truth-value of the following sentences on this interpretation?
 - 1. Rab
 - 2. $\forall x (Fx \rightarrow Gx)$
 - 3. $\forall x \exists y Rxy$
 - **4**. $\forall x \exists y Ryx$
 - 5. $\forall x \forall y (Rxy \rightarrow Fy)$
 - 6. $\exists x \forall y (Fy \rightarrow Ryx)$

Exercises!!!

• For each list of sentences, provide one interpretation which makes them all true, and one which makes them all false:

1. Fb,
$$\neg Gb$$
, $\exists xGx$

2. Rab,
$$\exists x (Rax \land Gx)$$

3.
$$\exists x \exists y (\neg x = y \land (Fx \land Gy)), \forall x (Fx \rightarrow Gx)$$

4.
$$\neg \exists x (Fx \land Gx), Fa, Gb$$

5. Rab,
$$\forall x \forall y (Rxy \rightarrow Ryx)$$

6.
$$\forall x \exists y Rxy, \neg \exists y \forall x Rxy$$

7. *Rab*,
$$\forall x \forall y (Rxy \rightarrow Ryx), \ \neg \exists x \exists y (\neg x = y \land (Rxy \land Ryx))$$

8.
$$Fb$$
, $\forall y(Fy \rightarrow y = a)$

9. $\exists x (Fx \land \forall y (Fy \rightarrow y = x) \land Rxb)$