Intermediate Logic Lecture Four

First-Order Logic

Rob Trueman rob.trueman@york.ac.uk

University of York

First-Order Logic

Introducing First-Order Logic

Names

Predicates

Quantifiers

Putting It All Together

Identity

The Limits of TFL

- Consider the following obviously valid argument:
 - Sharon studies archaeology
 - Everyone who studies archaeology wishes that they were Indiana Jones
 - So Sharon wishes that she were Indiana Jones
- We cannot use TFL to show that this argument is valid
- The trouble is that, as far as TFL is concerned, the three sentences are all just atoms

A: Sharon studies archaeology

 $B\colon$ Everyone who studies archaeology wishes that they were Indiana Jones

C: Sharon wishes that she were Indiana Jones

Splitting the (Logical) Atom

- To improve on TFL, we need to find a way of breaking atomic sentences down into subatomic units
 - An **atom** is a sentence which is not built out of any smaller sentences
 - In TFL, atoms have absolutely no internal structure
 - What we need is a logical system in which atomic sentences are built out of smaller *sub-sentential* expressions
- The system which does this is known as **First-Order Logic** (FOL)
 - This is the system you called Predicate Logic
 - We are calling it 'First-Order Logic' because there is another kind of predicate logic out there, called 'Second-Order Logic'

The Three Basic Building Blocks

- Names
 - Names in English: 'Gottlob Frege', 'Ludwig Wittgenstein', 'Rob Trueman'
 - Names in FOL: 'a', 'b', 'c', ... 'r'
- Predicates
 - Predicates in English: '___ is wise', '___ is human', '___ is a dog'
 - Predicates in FOL: 'A', 'B', 'C'...

Quantifiers

- Quantifiers in English: 'Everything', 'Something'
- Quantifiers in FOL: ' \forall ', ' \exists '

First-Order Logic

Introducing First-Order Logic

Names

Predicates

Quantifiers

Putting It All Together

Identity

Names versus Singular Terms

- In general, a **singular term** is an expression which stands for a specific person, place or thing
 - 'Bertrand Russell' stands for a specific person, Bertrand Russell
 - 'The inventor of quantified logic' stands for a specific person, Gottlob Frege
- These two expressions are quite different:
 - 'Bertrand Russell' is a *proper name*; it's job is just to stand for Bertrand Russell
 - 'The inventor of quantified logic' is a *definite description*; it's job is to pick out whoever satisfies that description
- The **names** in FOL are meant to be symbolisations of proper names, not definite descriptions
 - We'll come back to definite descriptions later!

Names in FOL

- Names in FOL are lower case letters between 'a' and 'r', and if we want even more names, then we can add numerical subscritps (e.g. 'q₂₇')
- Each name stands for exactly one thing
 - There are no *ambiguous* names which sometimes refer to one thing, sometimes to another
 - However, there is nothing wrong with one object being referred to by two (or more!) names
- When we provide a symbolisation key for FOL, here is how we specify what each name refers to:
 - b: Bertrand Russell
 - f: Gottlob Frege

First-Order Logic

Introducing First-Order Logic

Names

Predicates

Quantifiers

Putting It All Together

Identity

English Predicates

- The simplest predicates in English are expression which attribute properties to individuals; they let us say things about objects
- Here's an example of an English predicate: '____ is wise'
 - '____ is wise' attributes the property of wisdom
 - '__ is wise' says of an individual that they are wise
- Here's another example: '__ loves Intermediate Logic'
 - '___ loves Intermediate Logic' attributes the property of loving Intermediate Logic
 - '___ loves Intermediate Logic' says of an individual that they love Intermediate Logic

How to Make Predicates

- In general, you can think of predicates as things which combine with singular terms to make sentences
 - When you combine the predicate '____ is wise' with the name 'Socrates', you get the sentence 'Socrates is wise'
- Alternatively, you can think of a predicate as what you get when you remove a singular term from a sentence
 - Start with the sentence 'Daniel stole the ball from Simon'
 - If you remove 'Daniel', then you get: '____ stole the ball from Simon'
 - If you remove 'the ball', then you get: 'Daniel stole ____ from Simon'
 - If you remove 'Simon', then you get: 'Daniel stole the ball from ___'

Predicates of Higher Adicities

• The predicates that we have been looking at so far are all **monadic** predicate, meaning that they combine with just one name at a time

- '___ is wise' has one gap for a name to be plugged into

- But other predicates combine with *more than one* name at a time
 - Dyadic predicates combine with *two* names at a time, e.g. '___ loves ___'
 - Triadic predicates combine with *three* names at a time,
 e.g. '____ is between ____ and ___'
- We call the number of names that a predicate can combine with its **adicity**, and you can have predicates of any adicity whatsoever

Predicates in FOL

- Predicates in FOL are capital letters, and we can add numerical subscripts if we ever need more than 26 predicates (e.g. 'V₃₄₂')
- We also really need some way of indicating the adicity of each predicate; we will do that with numerical superscripts:
 - Monadic predicates: $A^1, B^1, \dots, Z^1, A^1_1, B^1_1, \dots, Z^1_1, A^1_2, B^1_2, \dots, Z^1_2, \dots$
 - **Dyadic predicates:** $A^2, B^2, \dots, Z^2, A_1^2, B_1^2, \dots, Z_1^2, A_2^2, B_2^2, \dots, Z_2^2, \dots$
 - *n*-adic predicates: $A^n, B^n, \dots, Z^n, A_1^n, B_1^n, \dots, Z_1^n, A_2^n, B_2^n, \dots, Z_2^n, \dots$

• When we provide a symbolisation key for FOL, here is how we specify what each monadic predicate symbolises:

 A^1 : ____ is angry

 H^1 : ____ is happy

- So if 'g' symbolises 'Gottlob Frege', then'A¹g' symbolises 'Gottlob Frege is angry', and 'H¹g' symbolises 'Gottlob Frege is happy'
- And if 'b' symbolises 'Bertrand Russell', then 'A¹b' symbolises 'Bertrand Russell is angry', and 'H¹b' symbolises 'Bertrand Russell is happy'

• Here is how to provide a symbolisation key for a dyadic predicate:

 L^2 : <u>1</u> loves <u>2</u>

- The little subscript numerals attached to the blanks are there to tell us the *order* in which '*L*²' applies to individuals
 - On this key, ' L^2 ' applies to the lover first, and to the beloved second
 - So ' $L^2 bg$ ' symbolises 'Bertrand Russell loves Gottlob Frege'
- Contrast L^{2} with M^{2} on the following key:

 M^2 : <u>__</u>2 loves <u>__</u>1

- On this key, ' M^2 ' applies to the *beloved* first and the *lover* second
- So '*M*²*bg*' symbolises 'Gottlob Frege loves Bertrand Russell'

• Here is how to provide a symbolisation key for a dyadic predicate:

 K^2 : ____1 kicks ___2

- The little subscript numerals attached to the blanks are there to tell us the *order* in which 'K²' applies to individuals
 - On this key, ' ${\cal K}^2$ ' applies to the kicker first, and to the kicked second
 - So ' $K^2 bg$ ' symbolises 'Bertrand Russell kicks Gottlob Frege'
- Contrast ' K^2 ' with ' N^2 ' on the following key:

 N^2 : <u>__2</u> kicks <u>__1</u>

- On this key, ' N^2 ' applies to the *kicked* first and the *kicker* second
- So ' N^2bg ' symbolises 'Gottlob Frege kicks Bertrand Russell'

• Here is how to provide a symbolisation key for a dyadic predicate:

 Q^2 : ____1 quizzes ____2

- The little subscript numerals attached to the blanks are there to tell us the *order* in which Q^2 applies to individuals
 - On this key, ' $Q^{2}{}^{\prime}$ applies to the quizzer first, and to the quizzed second
 - So ' $Q^2 bg$ ' symbolises 'Bertrand Russell quizzes Gottlob Frege'
- Contrast ' Q^2 ' with ' R^2 ' on the following key:

 R^2 : <u>__</u>2 quizzes <u>__</u>1

- On this key, ' R^2 ' applies to the *quizzed* first and the *quizzer* second
- So 'R²bg' symbolises 'Gottlob Frege quizzes Bertrand Russell'

Let's Get Rid of those Superscripts!

- Strictly speaking, we need the superscript on an FOL predicate to tell us what its adicity is
- But in practice, we can usually tell what the adicity of a predicate is just by looking at how we actually use it
 - If I write '*Rab*', then unless I've messed up, '*R*' must be a dyadic predicate
 - Equally, 'S' must be a triadic predicate if you give it the following entry in a symbolisation key:
 S: ____1 sold ____2 to ____3
- So from now on, we won't bother with those ugly superscripts unless we *really* have to

Intermediate Logic (4): First-Order Logic $\[\] Quantifiers$

First-Order Logic

Introducing First-Order Logic

Names

Predicates

Quantifiers

Putting It All Together

Identity

Quantifiers

- FOL has two basic quantifiers
 - The existential quantifier, ' \exists ', is the FOL for 'Something'
 - The universal quantifier, ' \forall ', is the FOL for 'Everything'
- A quantifier must always be followed by a variable
 - A variable is a lowercase letter from 's' to 'z', with subscripts if we need them (e.g. ' x_{3000} ')
- Here is an example: $\forall xHx'$
 - If 'H' is our sybmolisation for '__ is happy', then ' $\forall xHx$ ' says that everyone is happy
 - You should think of the 'x' as a kind of placeholder: whoever we pick as x, x is happy
- If we wanted to say that *someone* was happy, we would write:
 '∃xHx'

Domains of Quantification

- Very often, when we use the quantifier 'everyone' in English, we do not literally mean **everyone** in the *whole world*
- Normally, we are quantifying over a particular, limited **domain** of quantification
- Roughly, the domain of quantification is the collection of things we are talking about
- If we wanted to talk about the people in York, then we would pick the people in York to be our domain

domain: people in York

• The quantifiers only quantify over things in the domain, and all our names need to pick out things in the domain

Scope

- Like other logical expressions, quantifiers come with a scope
 - (1) If everyone is a singer, then Rob is a singer
 - $(2)\;$ Everyone is such that, if they are a singer, then Rob is a singer
- (1) is true: *everyone* includes me, so if everyone is a singer then I am a singer
- (2) is false: I am not a singer but Susanne Sundfør is; so it is not true of Susanne Sundfør that if she is a singer, then I am a singer!
- We can capture the difference between these two sentences in FOL by giving the universal quantifier different scope

(1')
$$\forall xSx \rightarrow Sr$$

(2') $\forall x(Sx \rightarrow Sr)$

Multiple-Generality

- Questions of scope become even more important when we are dealing with sentences which contain more than one quantifier:
 - (1) Everyone loves someone
 - (2) Someone is loved by everyone
- (1) means that each person loves someone, but leaves it open that different people may love different people
- (2) means that there is a single person who everyone loves
- We can capture the difference between these two sentences in FOL by giving the quantifiers different scope
 - (1') ∀x∃yLxy
 (2') ∃y∀xLxy

First-Order Logic

Introducing First-Order Logic

Names

Predicates

Quantifiers

Putting It All Together

Identity

An Example Symbolisation

domain: Everyone born after 1900

- b: Bertrand Russell
- g: Gottlob Frege
- A: ____ is angry
- *R*: $__1$ respects $__2$
- $M: __2$ loves $__1$

An Example Symbolisation

domain: Everyone born after 1900

- b: Bertrand Russell
- g: Gottlob Frege
- L: ____ is a logician
- R: ____1 respects ____2
- M: _____2 loves _____1
- Frege is angry, unless Russell respects him \Rightarrow Ag \lor Rbg
- Someone angry is loved by Frege $\Rightarrow \exists x (Ax \land Mxg)$
- Everyone is loved by someone $\Rightarrow \forall x \exists y (Myx)$

Reading FOL

• YOU WILL NOT BE ASSESSED ON YOUR ABILITY TO SYMBOLISE ENGLISH SENTENCES INTO FOL!

- However, it *can* be helpful to know how to translate a sentence of FOL into English
- In preparation for this module, you should do all of the formalisation exercises in *forall*χ, but for now we will do some translations from FOL to English

Top Translation Tips

- $\forall \chi(\mathcal{A}\chi \to \mathcal{B}\chi)$ symbolises 'All \mathcal{A} s are \mathcal{B} ' (or 'Everything that is \mathcal{A} is \mathcal{B} ')
- $\forall \chi(\mathcal{A}\chi \leftrightarrow \mathcal{B}\chi)$ symbolises 'All \mathcal{A} s are \mathcal{B} , and all \mathcal{B} s are \mathcal{A} '
- ∃χ(Aχ ∧ Bχ) symbolises 'Some A is B' (or 'Something is A and B')

Top Translation Tips

- Keep an eye on the scope of the quantifiers
 - ' $\forall x (Fx \rightarrow Ga)$ ' means something very different from ' $\forall xFx \rightarrow Ga$ '!
- Keep an eye on the order of the quantifiers

- ' $\forall x \exists y Rxy$ ' means something very different from ' $\exists y \forall x Rxy$ '

Top Translation Tips

- $\neg \exists \chi \mathcal{A}$ and $\forall \chi \neg \mathcal{A}$ can *both* be translated as 'Nothing is \mathcal{A} '
- $\neg \forall \chi \mathcal{A}$ and $\exists \chi \neg \mathcal{A}$ can *both* be translated as 'Something is not \mathcal{A} '

Exercises

- Translate the following into English, using this key:
 - domain: Everyone born after 1900 d: David Attenborough
 - r: Richard Attenborough
 - A: ____ is an actor
 - Z: ____ is a zoologist

(i)
$$Ldr \wedge Lrd$$

(ii) $\neg \exists x (Ax \wedge Zx)$
(ii) $\forall x (Zx \rightarrow Lxd)$
(iv) $\forall z \forall y (Az \rightarrow Lyz)$
(v) $\forall u \exists v (Av \wedge Luv)$
(vi) $\exists v \forall u (Zv \wedge Luv)$

First-Order Logic

Introducing First-Order Logic

Names

Predicates

Quantifiers

Putting It All Together

Identity

A Limit of FOL So Far...

- Consider this English sentence:
 - (1) Simon is mean to everyone
- On the face of it, it seems that we can easily symbolise this sentence:

(2) $\forall xMsx$

- But (2) implies that Simon is mean to everyone, *including* Simon!
- That is not how we ordinarily hear (1): we normally take this to say that Simon is mean to everyone, *except* Simon
- But as it stands, FOL is unable to express this simple thought

Introducing Identity

- '=' is a dyadic predicate symbol, but unlike the other predicates it **has** to be used to express identity; we cannot change its meaning at any time

(As a result, we don't need to bother including an entry for it in our symbolisation keys)

• Now return to this sentence:

(1) Simon is mean to everyone

• We can symbolise it as:

(2) $\forall x(\neg x = s \rightarrow Msx)$

There are at least...

- Consider these sentences:
 - (1) There is at least one apple
 - (2) There are at least two apples
 - (3) There are at least three apples
- Now that we have '=', we can symbolise these sentences in FOL:

(1')
$$\exists xAx$$

(2') $\exists x \exists y (Ax \land Ay \land \neg x = y)$
(3') $\exists x \exists y \exists z (Ax \land Ay \land Az \land \neg x = y \land \neg y = z \land \neg z = x)$

There are at most...

- Consider these sentences:
 - (1) There is at most one apple
 - (2) There are at most two apples
- Now that we have '=', we can symbolise these sentences in FOL:

 $\begin{array}{l} (1') \ \neg \exists x \exists y (Ax \land Ay \land \neg x = y) \\ (2') \ \neg \exists x \exists y \exists z (Ax \land Ay \land Az \land \neg x = y \land \neg y = z \land \neg z = x) \end{array}$

There are at most...

- Consider these sentences:
 - (1) There is at most one apple
 - (2) There are at most two apples
- Now that we have '=', we can symbolise these sentences in FOL:

 There are at most...

- Consider these sentences:
 - (1) There is at most one apple
 - (2) There are at most two apples
- Now that we have '=', we can symbolise these sentences in FOL:

 $\begin{aligned} (1') &\forall x \forall y ((Ax \land Ay) \to x = y) \\ (2') &\forall x \forall y \forall z ((Ax \land Ay \land Az) \to (x = y \lor y = z \lor z = x)) \end{aligned}$

There are exactly...

- Consider this sentence:
 - (1) There is exactly one apple
- (1) is the conjunction of these two sentences:
 - (2) There is at least one apple
 - (3) There is at most one apple
- So we can symbolise (1) in FOL as:

 $(1') \exists x A x \land \forall x \forall y ((A x \land A y) \to x = y)$

There are exactly...

- Consider this sentence:
 - (1) There is exactly one apple
- (1) is the conjunction of these two sentences:
 - (2) There is at least one apple
 - (3) There is at most one apple
- So we can symbolise (1) in FOL as:

 $(1') \exists x(Ax \land \forall y(Ay \to x = y))$

There are exactly...

- Consider this sentence:
 - (1) There is exactly one apple
- (1) is the conjunction of these two sentences:
 - (2) There is at least one apple
 - (3) There is at most one apple
- So we can symbolise (1) in FOL as:

(1') $\exists x \forall y (Ay \leftrightarrow x = y)$

Definite Descriptions

- Definite descriptions are expressions like 'the F'
 - The inventor of quantified logic
 - The present Queen of England
 - The present King of France
- On the face of it, they look like singular terms, i.e. expressions which stand for objects
- But Russell famously insisted that they were not
- We will not now look at Russell's reasons for this, but will just show how we can neatly formulate Russell's approach to definite descriptions in FOL

Russell's Theory of Definite Descriptions

- The Queen of England is having lunch
 - (a) There is at least one queen of England; and
 - (b) There is at most one queen of England; and
 - (c) Every queen of England is having lunch
- The author of Harry Potter is very rich
 - (a) There is at least one author of Harry Potter; and
 - (b) There is at most one author of Harry Potter; and
 - (c) Anyone who authored Harry Potter is very rich

Russell's Theory of Definite Descriptions

- The F is G
 - (a) There is at least one F; and
 - (b) There is at most one F; and
 - (c) All Fs are Gs
- In a short sentence:
 - There is exactly one F, and it is G
- In formal symbols:
 - $\exists x (Fx \land \forall y (Fy \rightarrow y = x) \land Gx)$
 - $\exists x (\forall y (Fy \leftrightarrow y = x) \land Gx)$

Practise!

- Translate the following into English, using this key:
 - domain: Everyone born after 1900
 - d: David Attenborough
 - r: Richard Attenborough
 - A: ____ is an actor
 - Z: ____ is a zoologist
 - L: $__1$ loves $__2$

(i)
$$\forall x (\neg x = r \rightarrow Lxd)$$

(ii) $\exists x \exists y ((Ax \land Ay) \land \neg x = y)$
(iii) $\exists x ((Zx \land \forall y (Zy \rightarrow y = x)) \land Lxr)$
(iv) $\exists x \forall y ((Zx \leftrightarrow y = x)) \land Lxr)$
(v) $\exists x \forall y (((Zx \land Lxr) \leftrightarrow y = x))$