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Arguments 1

Highlight the phrase which expresses the conclusion of each of these arguments:

1. It is sunny. So I should take my sunglasses.
2. It must have been sunny. I did wear my sunglasses, after all.
3. No one but you has had their hands in the cookie-jar. And the scene of

the crime is littered with cookie-crumbs. You’re the culprit!
4. Miss Scarlett and Professor Plum were in the study at the time of the

murder. And Reverend Green had the candlestick in the ballroom, and
we know that there is no blood on his hands. Hence Colonel Mustard did
it in the kitchen with the lead-piping. Recall, after all, that the gun had
not been fired.
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Valid arguments 2

A. Which of the following arguments is valid? Which is invalid?

1. Hypatia is a mathematician.
2. All mathematicians are carrots.

So: Therefore, Hypatia is a carrot. Valid

1. Abe Lincoln was either 5ft tall or he was once president.
2. Abe Lincoln was never president.

So: Abe Lincoln was5ft tall. Valid

1. If Ingrid trained hard, then she will win the race.
2. Ingrid did not train hard.

So: Ingrid will not win the race. Invalid
Imagine that Ingrid is racing against people much slower than her; in
that case, she would win even if she didn’t train hard.

1. Hugh Jackman was born in either France or Luxemborg.
2. Hugh Jackman was not born in Luxemborg.

So: Hugh Jackman was born in France. Valid

1. If the world were to end today, then I would not need to get up tomorrow
morning.

2. I will need to get up tomorrow morning.
So: The world will not end today. Valid

B. Could there be:

1. A valid argument that has one false premise and one true premise? Yes.
Example: the first argument, above.

2. A valid argument that has only false premises? Yes.
Example: Socrates is a frog, all frogs are excellent pianists, therefore
Socrates is an excellent pianist.

3. A valid argument with only false premises and a false conclusion? Yes.
The same example will suffice.

4. A sound argument with a false conclusion? No.
By definition, a sound argument has true premises. And a valid argument
is one where it is impossible for the premises to be true and the conclusion
false. So the conclusion of a sound argument is certainly true.
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2. Valid arguments 3

5. An invalid argument that can be made valid by the addition of a new
premise? Yes.
Plenty of examples, but let me offer a more general observation. We can
always make an invalid argument valid, by adding a contradiction into
the premises. For an argument is valid if and only if it is impossible
for all the premises to be true and the conclusion false. If the premises
are contradictory, then it is impossible for them all to be true (and the
conclusion false).

6. A valid argument that can be made invalid by the addition of a new
premise? No.
An argument is valid if and only if it is impossible for all the premises to
be true and the conclusion false. Adding another premise will only make
it harder for the premises all to be true together.

In each case: if so, give an example; if not, explain why not.



Other logical notions 3

A. For each of the following: Is it necessarily true, necessarily false, or contin-
gent?

1. Caesar crossed the Rubicon. Contingent
2. Someone once crossed the Rubicon. Contingent
3. No one has ever crossed the Rubicon. Contingent
4. If Caesar crossed the Rubicon, then someone has. Necessarily true
5. Even though Caesar crossed the Rubicon, no one has ever crossed the

Rubicon. Necessarily false
6. If anyone has ever crossed the Rubicon, it was Caesar. Contingent

B. Look back at the sentences G1–G4 in this section (about giraffes, gorillas
and martians in the wild animal park), and consider each of the following:

1. G2, G3, and G4 Jointly consistent
2. G1, G3, and G4 Jointly inconsistent
3. G1, G2, and G4 Jointly consistent
4. G1, G2, and G3 Jointly consistent

Which are jointly consistent? Which are jointly inconsistent?

C. Could there be:

1. A valid argument, the conclusion of which is necessarily false?
Yes: ‘1 + 1 = 3. So 1 + 2 = 4.’

2. An invalid argument, the conclusion of which is necessarily true?
No. If the conclusion is necessarily true, then there is no way to make it
false, and hence no way to make it false whilst making all the premises
true.

3. Jointly consistent sentences, one of which is necessarily false?
No. If a sentence is necessarily false, there is no way to make it true, let
alone along with all the other sentences.

4. Jointly inconsistent sentences, one of which is necessarily true?
Yes. ‘1 + 1 = 4’ and ‘1 + 1 = 2’.

In each case: if so, give an example; if not, explain why not.
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Connectives 5

A. Using the symbolisation key given, symbolise each English sentence in TFL.

M : Those creatures are men in suits.
C: Those creatures are chimpanzees.
G: Those creatures are gorillas.

1. Those creatures are not men in suits.
¬M

2. Those creatures are men in suits, or they are not.
(M ∨ ¬M)

3. Those creatures are either gorillas or chimpanzees.
(G ∨ C)

4. Those creatures are neither gorillas nor chimpanzees.
¬(C ∨G)

5. If those creatures are chimpanzees, then they are neither gorillas nor men
in suits.
(C → ¬(G ∨M))

6. Unless those creatures are men in suits, they are either chimpanzees or
they are gorillas.
(M ∨ (C ∨G))

B. Using the symbolisation key given, symbolise each English sentence in TFL.

A: Mister Ace was murdered.
B: The butler did it.
C: The cook did it.
D: The Duchess is lying.
E: Mister Edge was murdered.
F : The murder weapon was a frying pan.

1. Either Mister Ace or Mister Edge was murdered.
(A ∨ E)

2. If Mister Ace was murdered, then the cook did it.
(A → C)

3. If Mister Edge was murdered, then the cook did not do it.
(E → ¬C)

4. Either the butler did it, or the Duchess is lying.
(B ∨D)

5. The cook did it only if the Duchess is lying.
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5. Connectives 6

(C → D)
6. If the murder weapon was a frying pan, then the culprit must have been

the cook.
(F → C)

7. If the murder weapon was not a frying pan, then the culprit was either
the cook or the butler.
(¬F → (C ∨B))

8. Mister Ace was murdered if and only if Mister Edge was not murdered.
(A ↔ ¬E)

9. The Duchess is lying, unless it was Mister Edge who was murdered.
(D ∨ E)

10. If Mister Ace was murdered, he was done in with a frying pan.
(A → F )

11. Since the cook did it, the butler did not.
(C ∧ ¬B)

12. Of course the Duchess is lying!
D

C. Using the symbolisation key given, symbolise each English sentence in TFL.

E1: Ava is an electrician.
E2: Harrison is an electrician.
F1: Ava is a firefighter.
F2: Harrison is a firefighter.
S1: Ava is satisfied with her career.
S2: Harrison is satisfied with his career.

1. Ava and Harrison are both electricians.
(E1 ∧ E2)

2. If Ava is a firefighter, then she is satisfied with her career.
(F1 → S1)

3. Ava is a firefighter, unless she is an electrician.
(F1 ∨ E1)

4. Harrison is an unsatisfied electrician.
(E2 ∧ ¬S2)

5. Neither Ava nor Harrison is an electrician.
¬(E1 ∨ E2)

6. Both Ava and Harrison are electricians, but neither of them find it satis-
fying.
((E1 ∧ E2) ∧ ¬(S1 ∨ S2))

7. Harrison is satisfied only if he is a firefighter.
(S2 → F2)

8. If Ava is not an electrician, then neither is Harrison, but if she is, then
he is too.
((¬E1 → ¬E2) ∧ (E1 → E2))

9. Ava is satisfied with her career if and only if Harrison is not satisfied with
his.
(S1 ↔ ¬S2)

10. If Harrison is both an electrician and a firefighter, then he must be sat-
isfied with his work.



5. Connectives 7

((E2 ∧ F2) → S2)
11. It cannot be that Harrison is both an electrician and a firefighter.

¬(E2 ∧ F2)
12. Harrison and Ava are both firefighters if and only if neither of them is an

electrician.
((F2 ∧ F1) ↔ ¬(E2 ∨ E1))

D. Give a symbolisation key and symbolise the following English sentences in
TFL.

A: Alice is a spy.
B: Bob is a spy.
C: The code has been broken.
G: The German embassy will be in an uproar.

1. Alice and Bob are both spies.
(A ∧B)

2. If either Alice or Bob is a spy, then the code has been broken.
((A ∨B) → C)

3. If neither Alice nor Bob is a spy, then the code remains unbroken.
(¬(A ∨B) → ¬C)

4. The German embassy will be in an uproar, unless someone has broken
the code.
(G ∨ C)

5. Either the code has been broken or it has not, but the German embassy
will be in an uproar regardless.
((C ∨ ¬C) ∧G)

6. Either Alice or Bob is a spy, but not both.
((A ∨B) ∧ ¬(A ∧B))

E. Give a symbolisation key and symbolise the following English sentences in
TFL.

F : There is food to be found in the pridelands.
R: Rafiki will talk about squashed bananas.
A: Simba is alive.
K: Scar will remain as king.

1. If there is food to be found in the pridelands, then Rafiki will talk about
squashed bananas.
(F → R)

2. Rafiki will talk about squashed bananas unless Simba is alive.
(R ∨A)

3. Rafiki will either talk about squashed bananas or he won’t, but there is
food to be found in the pridelands regardless.
((R ∨ ¬R) ∧ F )

4. Scar will remain as king if and only if there is food to be found in the
pridelands.



5. Connectives 8

(K ↔ F )
5. If Simba is alive, then Scar will not remain as king.

(A → ¬K)

F. For each argument, write a symbolisation key and symbolise all of the
sentences of the argument in TFL.

1. If Dorothy plays the piano in the morning, then Roger wakes up cranky.
Dorothy plays piano in the morning unless she is distracted. So if Roger
does not wake up cranky, then Dorothy must be distracted.

P : Dorothy plays the Piano in the morning.
C: Roger wakes up cranky.
D: Dorothy is distracted.

(P → C), (P ∨D), (¬C → D)
2. It will either rain or snow on Tuesday. If it rains, Neville will be sad. If it

snows, Neville will be cold. Therefore, Neville will either be sad or cold
on Tuesday.

T1: It rains on Tuesday
T2: It snows on Tuesday
S: Neville is sad on Tuesday
C: Neville is cold on Tuesday

(T1 ∨ T2), (T1 → S), (T2 → C), (S ∨ C)
3. If Zoog remembered to do his chores, then things are clean but not neat.

If he forgot, then things are neat but not clean. Therefore, things are
either neat or clean; but not both.

Z: Zoog remembered to do his chores
C: Things are clean
N : Things are neat

(Z → (C ∧ ¬N)), (¬Z → (N ∧ ¬C)), ((N ∨ C) ∧ ¬(N ∧ C)).

G. We symbolised an exclusive or using ‘∨’, ‘∧’, and ‘¬’. How could you
symbolise an exclusive or using only two connectives? Is there any way to
symbolise an exclusive or using only one connective?
For two connectives, we could offer any of the following:

¬(A ↔ B)
(¬A ↔ B)

(¬(¬A ∧ ¬B) ∧ ¬(A ∧ B))

But if we wanted to symbolise it using only one connective, we would have to
introduce a new primitive connective.



Sentences of TFL 6

A. For each of the following: (a) Is it a sentence of TFL, strictly speaking?
(b) Is it a sentence of TFL, allowing for our relaxed bracketing conventions?

1. (A) (a) no (b) no
2. J374 ∨ ¬J374 (a) no (b) yes
3. ¬¬¬¬F (a) yes (b) yes
4. ¬ ∧ S (a) no (b) no
5. (G ∧ ¬G) (a) yes (b) yes
6. (A → (A ∧ ¬F )) ∨ (D ↔ E) (a) no (b) yes
7. [(Z ↔ S) → W ] ∧ [J ∨X] (a) no (b) yes
8. (F ↔ ¬D → J) ∨ (C ∧D) (a) no (b) no

B. Are there any sentences of TFL that contain no atomic sentences? Explain
your answer.
No. Atomic sentences contain atomic sentences (trivially). And every more
complicated sentence is built up out of less complicated sentences, that were
in turn built out of less complicated sentences, . . . , that were ultimately built
out of atomic sentences.

C. What is the scope of each connective in the sentence[
(H → I) ∨ (I → H)

]
∧ (J ∨K)

The scope of the left-most instance of ‘→’ is ‘(H → I)’.
The scope of the right-most instance of ‘→’ is ‘(I → H)’.
The scope of the left-most instance of ‘∨ is ‘

[
(H → I) ∨ (I → H)

]
’

The scope of the right-most instance of ‘∨’ is ‘(J ∨K)’
The scope of the conjunction is the entire sentence; so conjunction is the main
logical connective of the sentence.

9



Truth-tables for compound 10
sentences

A. Present truth-tables for each of the following:

1. A → A

A A→A
T T TT
F F TF

2. C → ¬C

C C →¬C
T T FF T
F F TT F

3. (A ↔ B) ↔ ¬(A ↔ ¬B)

A B (A↔B)↔¬ (A↔¬B)
T T T T T TT T F F T
T F T F F TF T T T F
F T F F T TF F T F T
F F F T F TT F F T F

4. (A → B) ∨ (B → A)

A B (A→B) ∨ (B→A)
T T T T T T T T T
T F T F F T F T T
F T F T T T T F F
F F F T F T F T F

5. (A ∧B) → (B ∨A)

A B (A∧B)→ (B∨A)
T T T T T T T T T
T F T F F T F T T
F T F F T T T T F
F F F F F T F F F

6. ¬(A ∨B) ↔ (¬A ∧ ¬B)

10



10. Truth-tables for compound sentences 11

A B ¬ (A∨B)↔ (¬A∧¬B)
T T F T T T T F T F F T
T F F T T F T F T FT F
F T F F T T T T F F F T
F F T F F F T T F TT F

7.
[
(A ∧B) ∧ ¬(A ∧B)

]
∧ C

A B C
[
(A∧B)∧¬ (A∧B)

]
∧ C

T T T T T T F F T T T FT
T T F T T T F F T T T FF
T F T T F F FT T F F FT
T F F T F F FT T F F FF
F T T F F T FT F F F FT
F T F F F T FT F F T FF
F F T F F F FT F F T FT
F F F F F F FT F F F FF

8. [(A ∧B) ∧ C] → B

A B C [(A∧B)∧C]→B
T T T T T T T T TT
T T F T T T F F TT
T F T T F F F T TF
T F F T F F F F TF
F T T F F T F T TT
F T F F F T F F TT
F F T F F F F T TF
F F F F F F F F TF

9. ¬
[
(C ∨A) ∨B

]
A B C ¬

[
(C∨A)∨B

]
T T T F TT T T T
T T F F F T T T T
T F T F TT T T F
T F F F F T T T F
F T T F TT F T T
F T F F F F F T T
F F T F TT F T F
F F F T F F F F F

B. Check all the claims made in introducing the new notational conventions
in §10.3, i.e. show that:

1. ‘((A ∧B) ∧ C)’ and ‘(A ∧ (B ∧ C))’ have the same truth-table



10. Truth-tables for compound sentences 12

A B C (A∧B) ∧ C A ∧ (B∧C)
T T T T T T TT T T T T T
T T F T T T F F T F T F F
T F T T F F FT T F F F T
T F F T F F F F T F F F F
F T T F F T FT F F T T T
F T F F F T F F F F T F F
F F T F F F FT F F F F T
F F F F F F F F F F F F F

2. ‘((A ∨B) ∨ C)’ and ‘(A ∨ (B ∨ C))’ have the same truth-table

A B C (A∨B) ∨ C A ∨ (B∨C)
T T T T T T TT T T T T T
T T F T T T TF T T T T F
T F T T T F TT T T F T T
T F F T T F TF T T F F F
F T T F T T TT F T T T T
F T F F T T TF F T T T F
F F T F F F TT F T F T T
F F F F F F F F F F F F F

3. ‘((A ∨B) ∧ C)’ and ‘(A ∨ (B ∧ C))’ do not have the same truth-table

A B C (A∨B) ∧ C A ∨ (B∧C)
T T T T T T TT T T T T T
T T F T T T F F T T T F F
T F T T T F TT T T F F T
T F F T T F F F T T F F F
F T T F T T TT F T T T T
F T F F T T F F F F T F F
F F T F F F FT F F F F T
F F F F F F F F F F F F F

4. ‘((A → B) → C)’ and ‘(A → (B → C))’ do not have the same truth-table

A B C (A→B)→C A→ (B→C)
T T T T T T TT T T T T T
T T F T T T F F T F T F F
T F T T F F TT T T F T T
T F F T F F TF T T F T F
F T T F T T TT F T T T T
F T F F T T F F F T T F F
F F T F T F TT F T F T T
F F F F T F F F F T F T F

Also, check whether:

5. ‘((A ↔ B) ↔ C)’ and ‘(A ↔ (B ↔ C))’ have the same truth-table
Indeed they do:



10. Truth-tables for compound sentences 13

A B C (A↔B)↔C A↔ (B↔C)
T T T T T T TT T T T T T
T T F T T T F F T F T F F
T F T T F F FT T F F F T
T F F T F F TF T T F T F
F T T F F T FT F F T T T
F T F F F T TF F T T F F
F F T F T F TT F T F F T
F F F F T F F F F F F T F



Semantic concepts 11

A. Revisit your answers to §10A. Determine which sentences were tautologies,
which were tautological contradictions, and which were neither tautologies nor
tautological contradictions.

1. A → A Tautology
2. C → ¬C Neither
3. (A ↔ B) ↔ ¬(A ↔ ¬B) Tautology
4. (A → B) ∨ (B → A) Tautology
5. (A ∧B) → (B ∨A) Tautology
6. ¬(A ∨B) ↔ (¬A ∧ ¬B) Tautology
7.

[
(A ∧B) ∧ ¬(A ∧B)

]
∧ C Tautological contradiction

8. [(A ∧B) ∧ C] → B Tautology
9. ¬

[
(C ∨A) ∨B

]
Neither

B. Use truth-tables to determine whether these sentences are jointly tautolog-
ically consistent, or jointly tautologically inconsistent:

1. A → A, ¬A → ¬A, A ∧A, A ∨A Jointly tautologically consistent (see
line 1)

A A→A ¬A→¬A A ∧ A A ∨ A
T T TT F T TF T T TT T TT
F F TF T F TT F F FF F FF

2. A ∨B, A → C, B → C Jointly tautologically consistent (see line 1)

A B C A ∨ B A→C B→C
T T T T TT T TT T TT
T T F T TT T F F T F F
T F T T TT T TT F TT
T F F T TF T F F F TF
F T T F TF F TT T TT
F T F F TT F TF T F F
F F T F F F F TT F TT
F F F F F F F TF F TF

3. B ∧ (C ∨A), A → B, ¬(B ∨ C) Jointly tautologically inconsistent

14



11. Semantic concepts 15

A B C B ∧ (C∨A) A→B ¬ (B∨C)
T T T T T T T T T TT F T T T
T T F T T F T T T TT F T T F
T F T F F T T T T F F F F T T
T F F F F F T T T F F T F F F
F T T T T T T F F TT F T T T
F T F T F F F F F TT F T T F
F F T F F T T F F TF F F T T
F F F F F F F F F TF T F F F

4. A ↔ (B ∨ C), C → ¬A, A → ¬B Jointly tautologically consistent (see
line 8)

A B C A↔ (B∨C) C →¬A A→¬B
T T T T T T T T T FF T T FF T
T T F T T T T F F TF T T FF T
T F T T T F T T T FF T T TT F
T F F T F F F F F TF T T TT F
F T T F F T T T T TT F F TF T
F T F F F T T F F TT F F TF T
F F T F F F T T T TT F F TT F
F F F F T F F F F TT F F TT F

C. Use truth-tables to determine whether each argument is tautologically valid
or tautologically invalid.

1. A → A .˙. A Tautologically invalid (see line 2)

A A→A A
T T TT T
F F TF F

2. A → (A ∧ ¬A) .˙. ¬A Tautologially valid

A A→ (A∧¬A) ¬ A
T T F T F F T FT
F F T F FT F TF

3. A ∨ (B → A) .˙. ¬A → ¬B Tautologically valid

A B A ∨ (B→A) ¬A→¬B
T T T T T T T F T TF T
T F T T F T T F T TT F
F T F F T F F T F FF T
F F F T F T F T F TT F

4. A ∨B,B ∨ C,¬A .˙. B ∧ C Tautologically invalid (see line 6)
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A B C A ∨ B B ∨ C ¬ A B ∧ C
T T T T TT T TT FT T TT
T T F T TT T TF FT T F F
T F T T TF F TT FT F FT
T F F T TF F F F FT F F F
F T T F TT T TT TF T TT
F T F F TT T TF TF T F F
F F T F F F F TT TF F FT
F F F F F F F F F TF F F F

5. (B ∧A) → C, (C ∧A) → B .˙. (C ∧B) → A Tautologically invalid (see
line 5)

A B C (B∧A)→C (C∧A)→B (C∧B)→A
T T T T T T TT T T T TT T T T TT
T T F T T T F F F F T TT F F T TT
T F T F F T TT T T T F F T F F TT
T F F F F T TF F F T TF F F F TT
F T T T F F TT T F F TT T T T FF
F T F T F F TF F F F TT F F T TF
F F T F F F TT T F F TF T F F TF
F F F F F F TF F F F TF F F F TF

D. Answer each of the questions below and justify your answer.

1. Suppose that A and B are tautologically equivalent. What can you say
about A ↔ B?
A and B have the same truth-value on every line of a complete truth-
table, so A ↔ B is true on every line. It is a tautology.

2. Suppose that (A ∧B) → C is neither a tautology nor a tautological con-
tradiction. What can you say about whether A ,B .˙. C is tautologically
valid?
Since the sentence (A ∧ B) → C is not a tautology, there is some line on
which it is false. Since it is a conditional, on that line, A and B are true
and C is false. So the argument is tautologically invalid.

3. Suppose that A , B and C are jointly tautologically inconsistent. What
can you say about (A ∧ B ∧ C )?
Since the sentences are jointly tautologically inconsistent, there is no
valuation on which they are all true. So their conjunction is false on
every valuation. It is a tautological contradiction

4. Suppose that A is a tautological contradiction. What can you say about
whether A ,B � C?
Since A is false on every line of a complete truth-table, there is no line
on which A and B are true and C is false. So the entailment holds.

5. Suppose that C is a tautology. What can you say about whether A ,B �
C?
Since C is true on every line of a complete truth-table, there is no line
on which A and B are true and C is false. So the entailment holds.

6. Suppose that A and B are tautologically equivalent. What can you say
about (A ∨ B)?
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Not much. Since A and B are true on exactly the same lines of the
truth-table, their disjunction is true on exactly the same lines. So, their
disjunction is tautologically equivalent to them.

7. Suppose that A and B are not tautologically equivalent. What can you
say about (A ∨ B)?
A and B have different truth-values on at least one line of a complete
truth-table, and (A∨B) will be true on that line. On other lines, it might
be true or false. So (A ∨ B) is either a tautology or it is contingent; it is
not a tautological contradiction.

E. Consider the following principle:

� Suppose A and B are tautologically equivalent. Suppose an argument
contains A (either as a premise, or as the conclusion). The tautological
validity of the argument would be unaffected, if we replaced A with B .

Is this principle correct? Explain your answer.
The principle is correct. Since A and B are tautologically equivalent, they have
the same truth-table. So every valuation that makes A true also makes B true,
and every valuation that makes A false also makes B false. So if no valuation
makes all the premises true and the conclusion false, when A was among the
premises or the conclusion, then no valuation makes all the premises true and
the conclusion false, when we replace A with B .
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A. Determine whether each sentence is a tautology, a tautological contradic-
tion, or neither. Feel free to use shortcuts, if you would like!

1. ¬B ∧B Tautological contradiction

B ¬B ∧ B
T F F
F F

2. ¬D ∨D Tautology

D ¬D ∨ D
T T
F T T

3. (A ∧B) ∨ (B ∧A) Neither

A B (A∧B) ∨ (B∧A)
T T T T
T F F F F
F T F F F
F F F F F

4. ¬[A → (B → A)] Tautological contradiction

A B ¬[A→(B→A)]
T T F T T
T F F T T
F T F T
F F F T

5. A ↔ [A → (B ∧ ¬B)] Tautological contradiction

A B A↔ [A→(B∧¬B)]
T T F F FF
T F F F F
F T F T
F F F T

6. ¬(A ∧B) ↔ A Neither

18
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A B ¬ (A∧B)↔A
T T F T F
T F T F T
F T T F F
F F T F F

7. A → (B ∨ C) Neither

A B C A→ (B∨C)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T
F T F T
F F T T
F F F T

8. (A ∧ ¬A) → (B ∨ C) Tautology

A B C (A∧¬A)→ (B∨C)
T T T FF T
T T F FF T
T F T FF T
T F F FF T
F T T F T
F T F F T
F F T F T
F F F F T

9. (B ∧D) ↔ [A ↔ (A ∨ C)] Neither

A B C D (B∧D)↔ [A↔(A∨C)]
T T T T T T T T
T T T F F F T T
T T F T T T T T
T T F F F F T T
T F T T F F T T
T F T F F F T T
T F F T F F T T
T F F F F F T T
F T T T T F F T
F T T F F T F T
F T F T T T T F
F T F F F F T F
F F T T F T F T
F F T F F T F T
F F F T F F T F
F F F F F F T F
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B. Determine whether these pairs of sentences are tautologically equivalent.
Feel free to use shortcuts, if you would like!

1. A, ¬A Not tautologically equivalent

A ¬A
T F
F T

2. A, A ∨A Tautologically equivalent

A A ∨A
T T
F F

3. A → A, A ↔ A Tautologically equivalent

A A → A A ↔ A
T T T
F T T

4. A ∨ ¬B, A → B Not tautologically equivalent

A B A ∨ ¬B A → B
T T
T F T F
F T
F F

5. A ∧ ¬A, ¬B ↔ B Tautologically equivalent

A B A ∧ ¬A ¬B↔B
T T FF F F
T F FF T F
F T F F F
F F F T F

6. ¬(A ∧B), ¬A ∨ ¬B Tautologically equivalent

A B ¬ (A∧B) ¬A ∨ ¬B
T T F T F FF
T F T F F TT
F T T F T TF
F F T F T TT

7. ¬(A → B), ¬A → ¬B Not tautologically equivalent

A B ¬ (A→B) ¬A→¬B
T T F T F TF
T F
F T
F F
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8. (A → B), (¬B → ¬A) Tautologically equivalent

A B (A → B) (¬B→¬A)
T T T F T
T F F T FF
F T T F T
F F T T TT

C. Determine whether these sentences are jointly tautologically consistent, or
jointly tautologically inconsistent. Feel free to use shortcuts, if you would like!

1. A ∧B, C → ¬B, C Jointly tautologically inconsistent

A B C A ∧B C →¬B C
T T T T F F T
T T F T T F
T F T F T T T
T F F F T F
F T T F F F T
F T F F T F
F F T F T T T
F F F F T F

2. A → B, B → C, A, ¬C Jointly tautologically inconsistent

A B C A → B B → C A ¬C
T T T T T T F
T T F T F T T
T F T F T T F
T F F F T T T
F T T T T F F
F T F T F F T
F F T T T F F
F F F T T F T

3. A ∨B, B ∨ C, C → ¬A Jointly tautologically consistent

A B C A ∨B B ∨ C C→¬A
T T T
T T F T T T
T F T
T F F
F T T
F T F
F F T
F F F
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D. Determine whether these arguments are tautologically valid. Feel free to
use shortcuts, if you would like!

1. A ∨
[
A → (A ↔ A)

]
.˙. A Invalid

A A ∨
[
A→(A↔A)

]
A

T
F T T F

2. A ↔ ¬(B ↔ A) .˙. A Invalid

A B A↔¬(B ↔ A) A
T T
T F
F T
F F TF T F

3. A → B,B .˙. A Invalid

A B A → B B A
T T
T F
F T T T F
F F

4. A ∨B,B ∨ C,¬B .˙. A ∧ C Valid

A B C A ∨B B ∨ C ¬B A ∧ C
T T T T
T T F F F
T F T T
T F F F T F
F T T F F
F T F F F
F F T F T F
F F F F T F

5. A ↔ B,B ↔ C .˙. A ↔ C Valid

A B C A ↔ B B ↔ C A ↔ C
T T T T
T T F F F
T F T T
T F F F F
F T T F F
F T F T
F F T F F
F F F T
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A. The following two ‘proofs’ are incorrect. Explain the mistakes they make.

1 ¬L → (A ∧ L)

2 ¬L

3 A →E 1, 2

4 L

5 ⊥ ⊥I 4, 2

6 A ⊥E 5

7 A TND 2–3, 4–6

→E on line 3 should yield ‘A∧L’. ‘A’
could then be obtained by ∧E.
⊥I on line 5 illicitly refers to a line
from a closed subproof (line 2).

1 A ∧ (B ∧ C)

2 (B ∨ C) → D

3 B ∧E 1

4 B ∨ C ∨I 3

5 D →E 4, 2

∧E on line 3 should yield ‘B∧C’. ‘B’
could then be obtained by ∧E again.
The citation for line 5 is the wrong
way round: it should be ‘→E 2, 4’.

B. The following three proofs are missing their citations (rule and line num-
bers). Add them, to turn them into bona fide proofs. Additionally, write down
the argument that corresponds to each proof.

1 P ∧ S

2 S → R

3 P ∧E 1

4 S ∧E 1

5 R →E 2, 4

6 R ∨ E ∨I 5

Corresponding argument:
P ∧ S, S → R .˙. R ∨ E

1 A → D

2 A ∧B

3 A ∧E 2

4 D →E 1, 3

5 D ∨ E ∨I 4

6 (A ∧B) → (D ∨ E) →I 2–5

Corresponding argument:
A → D .˙. (A ∧B) → (D ∨ E)

23
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1 ¬L → (J ∨ L)

2 ¬L

3 J ∨ L →E 1, 2

4 J

5 J ∧ J ∧I 4, 4

6 J ∧E 5

7 L

8 ⊥ ⊥I 7, 2

9 J ⊥E 8

10 J ∨E 3, 4–6, 7–9

Corresponding argument:
¬L → (J ∨ L),¬L .˙. J

C. Give a proof for each of the following arguments:

1. P .˙. ¬¬P
1 P

2 ¬P

3 ⊥ ⊥I 1, 2

4 ¬¬P ¬I 2–3

2. J → ¬J .˙. ¬J
1 J → ¬J

2 J

3 ¬J →E 1, 2

4 ⊥ ⊥I 2, 3

5 ¬J ¬I 2–4

3. Q → (Q ∧ ¬Q) .˙. ¬Q
1 Q → (Q ∧ ¬Q)

2 Q

3 Q ∧ ¬Q →E 1, 2

4 ¬Q ∧E 3

5 ⊥ ⊥I 2, 4

6 ¬Q ¬I 2–5
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4. A → (B → C) .˙. (A ∧B) → C

1 A → (B → C)

2 A ∧B

3 A ∧E 2

4 B → C →E 1, 3

5 B ∧E 2

6 C →E 4, 5

7 (A ∧B) → C →I 2–6

5. K ∧ L .˙. K ↔ L
1 K ∧ L

2 K

3 L ∧E 1

4 L

5 K ∧E 1

6 K ↔ L ↔I 2–3, 4–5

6. (C ∧D) ∨ E .˙. E ∨D

1 (C ∧D) ∨ E

2 C ∧D

3 D ∧E 2

4 E ∨D ∨I 3

5 E

6 E ∨D ∨I 5

7 E ∨D ∨E 1, 2–4, 5–6

7. A ↔ B,B ↔ C .˙. A ↔ C

1 A ↔ B

2 B ↔ C

3 A

4 B ↔E 1, 3

5 C ↔E 2, 4

6 C

7 B ↔E 2, 6

8 A ↔E 1, 7

9 A ↔ C ↔I 3–5, 6–8
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8. ¬F → G,F → H .˙. G ∨H

1 ¬F → G

2 F → H

3 F

4 H →E 2, 3

5 G ∨H ∨I 4

6 ¬F

7 G →E 1, 6

8 G ∨H ∨I 7

9 G ∨H TND 3–5, 6–8

9. (Z ∧K) ∨ (K ∧M),K → D .˙. D

1 (Z ∧K) ∨ (K ∧M)

2 K → D

3 Z ∧K

4 K ∧E 3

5 K ∧M

6 K ∧E 5

7 K ∨E 1, 3–4, 5–6

8 D →E 2, 7

10. P ∧ (Q ∨R), P → ¬R .˙. Q ∨ E

1 P ∧ (Q ∨R)

2 P → ¬R

3 P ∧E 1

4 ¬R →E 2, 3

5 Q ∨R ∧E 1

6 Q

7 Q ∨ E ∨I 6

8 R

9 ⊥ ⊥I 8, 4

10 Q ∨ E ⊥E 9

11 Q ∨ E ∨E 5, 6–7, 8–10
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11. S ↔ T .˙. S ↔ (T ∨ S)

1 S ↔ T

2 S

3 T ↔E 1, 2

4 T ∨ S ∨I 3

5 T ∨ S

6 T

7 S ↔E 1, 6

8 S

9 S ∧ S ∧I 8, 8

10 S ∧E 9

11 S ∨E 5, 6–7, 8–10

12 S ↔ (T ∨ S) ↔I 2–4, 5–11

12. ¬(P → Q) .˙. ¬Q
1 ¬(P → Q)

2 Q

3 P

4 Q ∧Q ∧I 2, 2

5 Q ∧E 4

6 P → Q →I 3–5

7 ⊥ ⊥I 6, 1

8 ¬Q ¬I 2–7

13. ¬(P → Q) .˙. P

1 ¬(P → Q)

2 P

3 P ∧ P ∧I 2, 2

4 P ∧E 3

5 ¬P

6 P

7 ⊥ ⊥I 6, 5

8 Q ⊥E 7

9 P → Q →I 6–8

10 ⊥ ⊥I 9, 1

11 P ⊥E 10

12 P TND 2–4, 5–11
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A. The following proofs are missing their citations (rule and line numbers).
Add them wherever they are required:

1 W → ¬B

2 A ∧W

3 B ∨ (J ∧K)

4 W ∧E 2

5 ¬B →E 1, 4

6 J ∧K DS 3, 5

7 K ∧E 6

1 L ↔ ¬O

2 L ∨ ¬O

3 ¬L

4 ¬O DS 2, 3

5 L ↔E 1, 4

6 ⊥ ⊥I 5, 3

7 ¬¬L ¬I 3–6

8 L DNE 7

1 Z → (C ∧ ¬N)

2 ¬Z → (N ∧ ¬C)

3 ¬(N ∨ C)

4 ¬N ∧ ¬C DeM 3

5 ¬N ∧E 4

6 ¬C ∧E 4

7 Z

8 C ∧ ¬N →E 1, 7

9 C ∧E 8

10 ⊥ ⊥I 9, 6

11 ¬Z ¬I 7–10

12 N ∧ ¬C →E 2, 11

13 N ∧E 12

14 ⊥ ⊥I 13, 5

15 ¬¬(N ∨ C) ¬I 3–14

16 N ∨ C DNE 15

B. Give a proof for each of these arguments:

1. E ∨ F , F ∨G, ¬F .˙. E ∧G

1 E ∨ F

2 F ∨G

3 ¬F

4 E DS 1, 3

5 G DS 2, 3

6 E ∧G ∧I 4, 5

28
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2. M ∨ (N → M) .˙. ¬M → ¬N
1 M ∨ (N → M)

2 ¬M

3 N → M DS 1, 2

4 ¬N MT 3, 2

5 ¬M → ¬N →I 2–4

3. (M ∨N) ∧ (O ∨ P ), N → P , ¬P .˙. M ∧O

1 (M ∨N) ∧ (O ∨ P )

2 N → P

3 ¬P

4 ¬N MT 2, 3

5 M ∨N ∧E 1

6 M DS 5, 4

7 O ∨ P ∧E 1

8 O DS 7, 3

9 M ∧O ∧I 6, 8

4. (X ∧ Y ) ∨ (X ∧ Z), ¬(X ∧D), D ∨M .˙.M

1 (X ∧ Y ) ∨ (X ∧ Z)

2 ¬(X ∧D)

3 D ∨M

4 X ∧ Y

5 X ∧E 4

6 X ∧ Z

7 X ∧E 6

8 X ∨E 1, 4–5, 6–7

9 D

10 X ∧D ∧I 8, 9

11 ⊥ ⊥I 10, 2

12 ¬D ¬I 9–11

13 M DS 3, 12



Derived rules 17

A. Provide proof schemes that justify the addition of the third and fourth De
Morgan rules as derived rules.

Third rule:
m ¬A ∧ ¬B

k ¬A ∧E m

k + 1 ¬B ∧E m

k + 2 A ∨ B

k + 3 A

k + 4 ⊥ ⊥I k + 3, k

k + 5 B

k + 6 ⊥ ⊥I k + 5, k + 1

k + 7 ⊥ ∨E k + 2, k + 3–k + 4, k + 5–k + 6

k + 8 ¬(A ∨ B) ¬I k + 2–k + 7

Fourth rule:
m ¬(A ∨ B)

k A

k + 1 A ∨ B ∨I k

k + 2 ⊥ ⊥I k + 1, m

k + 3 ¬A ¬I k–k + 2

k + 4 B

k + 5 A ∨ B ∨I k + 4

k + 6 ⊥ ⊥I k + 5, m

k + 7 ¬B ¬I k + 4–k + 6

k + 8 ¬A ∧ ¬B ∧I k + 3, k + 7

30
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A. Show that each of the following sentences is a theorem:

1. O → O
1 O

2 O R 1

3 O → O →I 1–2

2. N ∨ ¬N
1 N

2 N ∨ ¬N ∨I 1

3 ¬N

4 N ∨ ¬N ∨I 3

5 N ∨ ¬N TND 1–2, 3–4

3. J ↔ [J ∨ (L ∧ ¬L)]

1 J

2 J ∨ (L ∧ ¬L) ∨I 1

3 J ∨ (L ∧ ¬L)

4 L ∧ ¬L

5 L ∧E 4

6 ¬L ∧E 4

7 ⊥ ⊥I 5, 6

8 ¬(L ∧ ¬L) ¬I 4–7

9 J DS 3, 8

10 J ↔ [J ∨ (L ∧ ¬L)] ↔I 1–2, 3–9

31
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4. ((A → B) → A) → A

1 (A → B) → A

2 ¬A

3 ¬(A → B) MT 1, 2

4 A

5 ⊥ ⊥I 4, 2

6 B ⊥E 5

7 A → B →I 4–6

8 ⊥ ⊥I 7, 3

9 ¬¬A ¬I 2

10 A DNE 9

11 ((A → B) → A) → A →I 1–10

B. Provide proofs to show each of the following:

1. C → (E ∧G),¬C → G ` G

1 C → (E ∧G)

2 ¬C → G

3 C

4 E ∧G →E 1, 3

5 G ∧E 4

6 ¬C

7 G →E 2, 6

8 G TND 3–5, 6–7

2. M ∧ (¬N → ¬M) ` (N ∧M) ∨ ¬M
1 M ∧ (¬N → ¬M)

2 M ∧E 1

3 ¬N → ¬M ∧E 1

4 ¬N

5 ¬M →E 3, 4

6 ⊥ ⊥I 2, 5

7 ¬¬N ¬I 4–6

8 N DNE 7

9 N ∧M ∧I 8, 2

10 (N ∧M) ∨ ¬M ∨I 9
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3. (Z ∧K) ↔ (Y ∧M), D ∧ (D → M) ` Y → Z

1 (Z ∧K) ↔ (Y ∧M)

2 D ∧ (D → M)

3 D ∧E 2

4 D → M ∧E 2

5 M →E 4, 3

6 Y

7 Y ∧M ∧I 6, 5

8 Z ∧K ↔E 1, 7

9 Z ∧E 8

10 Y → Z →I 6–9

4. (W ∨X) ∨ (Y ∨ Z), X → Y,¬Z ` W ∨ Y

1 (W ∨X) ∨ (Y ∨ Z)

2 X → Y

3 ¬Z

4 W ∨X

5 W

6 W ∨ Y ∨I 5

7 X

8 Y →E 2, 7

9 W ∨ Y ∨I 8

10 W ∨ Y ∨E 4, 5–6, 7–9

11 Y ∨ Z

12 Y DS 11, 3

13 W ∨ Y ∨I 12

14 W ∨ Y ∨E 1, 4–10, 11–13

C. Show that each of the following pairs of sentences are provably equivalent:

1. R ↔ E, E ↔ R

1 R ↔ E

2 E

3 R ↔E 1, 2

4 R

5 E ↔E 1, 4

6 E ↔ R ↔I 2–3, 4–5

1 E ↔ R

2 E

3 R ↔E 1, 2

4 R

5 E ↔E 1, 4

6 R ↔ E ↔I 4–5, 2–3
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2. G, ¬¬¬¬G

1 G

2 ¬¬¬G

3 ¬G DNE 2

4 ⊥ ⊥I 1, 3

5 ¬¬¬¬G ¬I 2–4

1 ¬¬¬¬G

2 ¬¬G DNE 1

3 G DNE 2

3. T → S, ¬S → ¬T

1 T → S

2 ¬S

3 ¬T MT 1, 2

4 ¬S → ¬T →I 2–3

1 ¬S → ¬T

2 T

3 ¬S

4 ¬T →E 1, 3

5 ⊥ ⊥I 2, 4

6 ¬¬S ¬I 3–5

7 S DNE 6

8 T → S →I 2–7

4. U → I, ¬(U ∧ ¬I)

1 U → I

2 U ∧ ¬I

3 U ∧E 2

4 ¬I ∧E 2

5 I →E 1, 3

6 ⊥ ⊥I 5, 4

7 ¬(U ∧ ¬I) ¬I 2–6

1 ¬(U ∧ ¬I)

2 U

3 ¬I

4 U ∧ ¬I ∧I 2, 3

5 ⊥ ⊥I 4, 1

6 ¬¬I ¬I 3–5

7 I DNE 6

8 U → I →I 2–7
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5. ¬(C → D), C ∧ ¬D

1 C ∧ ¬D

2 C ∧E 1

3 ¬D ∧E 1

4 C → D

5 D →E 4, 2

6 ⊥ ⊥I 5, 3

7 ¬(C → D) ¬I 4–6

1 ¬(C → D)

2 D

3 C

4 D R 2

5 C → D →I 3–4

6 ⊥ ⊥I 5, 1

7 ¬D ¬I 2–6

8 ¬C

9 C

10 ⊥ ⊥I 9, 8

11 D ⊥E 10

12 C → D →I 9–11

13 ⊥ ⊥I 12, 1

14 ¬¬C ¬I 8–13

15 C DNE 14

16 C ∧ ¬D ∧I 15, 7

6. ¬G ↔ H, ¬(G ↔ H)

1 ¬G ↔ H

2 G ↔ H

3 G

4 H ↔E 2, 3

5 ¬G ↔E 1, 4

6 ⊥ ⊥I 3, 5

7 ¬G

8 H ↔E 1, 7

9 G ↔E 2, 8

10 ⊥ ⊥I 9, 7

11 ⊥ TND 3–6, 7–10

12 ¬(G ↔ H) ¬I 2–11
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1 ¬(G ↔ H)

2 ¬G

3 ¬H

4 G

5 ⊥ ⊥I 4, 2

6 H ⊥E 5

7 H

8 ⊥ ⊥I 7, 3

9 G ⊥E 8

10 G ↔ H ↔I 4–6, 7–9

11 ⊥ ⊥I 10, 1

12 ¬¬H ¬I 3–11

13 H DNE 12

14 H

15 G

16 G

17 H R 14

18 H

19 G R 15

20 G ↔ H ↔I 16–17, 18–19

21 ⊥ ⊥I 20, 1

22 ¬G ¬I 15–21

23 ¬G ↔ H ↔I 2–13, 14–22

D. If you know that A ` B , what can you say about (A ∧ C ) ` B? What
about (A ∨ C ) ` B? Explain your answers.
If A ` B , then (A ∧ C ) ` B . After all, if A ` B , then there is some proof
with assumption A that ends with B , and no undischarged assumptions other
than A . Now, if we start a proof with assumption (A ∧ C ), we can obtain A
by ∧E. We can now copy and paste the original proof of B from A , adding 1
to every line number and line number citation. The result will be a proof of B
from assumption A .

However, we cannot prove much from (A ∨ C ). After all, it might be
impossible to prove B from C .

E. According to a result known as the deduction theorem, A ` C iff
` A → C . Give a demonstration of this result.
If A ` C , then there is a proof which has this shape:
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1 A

. . .

. . .

. . .

n C

We can turn this into a proof that ` A → C just by using →I to discharge the
initial assumption:

1 A

. . .

. . .

. . .

n C

n + 1 A → C →I 1–n

So if A ` C , then ` A → C . And the converse is clearly true too. Suppose
we started with the proof that ` A → C . We could cut the subproof out, and
take it as a free-standing proof that A ` C . So A ` C iff
` A → C .
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A. Here are the syllogistic figures identified by Aristotle and his successors,
along with their medieval names:

� Barbara. All G are F. All H are G. So: All H are F
∀x(Gx → Fx),∀x(Hx → Gx) .˙. ∀x(Hx → Fx)

� Celarent. No G are F. All H are G. So: No H are F
∀x(Gx → ¬Fx),∀x(Hx → Gx) .˙. ∀x(Hx → ¬Fx)

� Ferio. No G are F. Some H is G. So: Some H is not F
∀x(Gx → ¬Fx),∃x(Hx ∧Gx) .˙. ∃x(Hx ∧ ¬Fx)

� Darii. All G are H. Some H is G. So: Some H is F.
∀x(Gx → Fx),∃x(Hx ∧Gx) .˙. ∃x(Hx ∧ Fx)

� Camestres. All F are G. No H are G. So: No H are F.
∀x(Fx → Gx),∀x(Hx → ¬Gx) .˙. ∀x(Hx → ¬Fx)

� Cesare. No F are G. All H are G. So: No H are F.
∀x(Fx → ¬Gx),∀x(Hx → Gx) .˙. ∀x(Hx → ¬Fx)

� Baroko. All F are G. Some H is not G. So: Some H is not F.
∀x(Fx → Gx),∃x(Hx ∧ ¬Gx) .˙. ∃x(Hx ∧ ¬Fx)

� Festino. No F are G. Some H are G. So: Some H is not F.
∀x(Fx → ¬Gx),∃x(Hx ∧Gx) .˙. ∃x(Hx ∧ ¬Fx)

� Datisi. All G are F. Some G is H. So: Some H is F.
∀x(Gx → Fx),∃x(Gx ∧Hx) .˙. ∃x(Hx ∧ Fx)

� Disamis. Some G is F. All G are H. So: Some H is F.
∃x(Gx ∧ Fx),∀x(Gx → Hx) .˙. ∃x(Hx ∧ Fx)

� Ferison. No G are F. Some G is H. So: Some H is not F.
∀x(Gx → ¬Fx),∃x(Gx ∧Hx) .˙. ∃x(Hx ∧ ¬Fx)

� Bokardo. Some G is not F. All G are H. So: Some H is not F.
∃x(Gx ∧ ¬Fx),∀x(Gx → Hx) .˙. ∃x(Hx ∧ ¬Fx)

� Camenes. All F are G. No G are H So: No H is F.
∀x(Fx → Gx),∀x(Gx → ¬Hx) .˙. ∀x(Hx → ¬Fx)

� Dimaris. Some F is G. All G are H. So: Some H is F.
∃x(Fx ∧Gx),∀x(Gx → Hx) .˙. ∃x(Hx ∧ Fx)

� Fresison. No F are G. Some G is H. So: Some H is not F.
∀x(Fx → ¬Gx),∃x(Gx ∧Hx) .˙. ∃(Hx ∧ ¬Fx)

Symbolise each argument in FOL.

B. Using the following symbolisation key:

domain: people
K: knows the combination to the safe
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S: is a spy
V : is a vegetarian
h: Hofthor
i: Ingmar

symbolise the following sentences in FOL:

1. Neither Hofthor nor Ingmar is a vegetarian.
¬V h ∧ ¬V i

2. No spy knows the combination to the safe.
∀x(Sx → ¬Kx)

3. No one knows the combination to the safe unless Ingmar does.
∀x¬Kx ∨Ki

4. Hofthor is a spy, but no vegetarian is a spy.
Sh ∧ ∀x(V x → ¬Sx)

C. Using this symbolisation key:

domain: all animals
A: is an alligator
M : is a monkey
R: is a reptile
Z: lives at the zoo
a: Amos
b: Bouncer
c: Cleo

symbolise each of the following sentences in FOL:

1. Amos, Bouncer, and Cleo all live at the zoo.
Za ∧ Zb ∧ Zc

2. Bouncer is a reptile, but not an alligator.
Rb ∧ ¬Ab

3. Some reptile lives at the zoo.
∃x(Rx ∧ Zx)

4. Every alligator is a reptile.
∀x(Ax → Rx)

5. Any animal that lives at the zoo is either a monkey or an alligator.
∀x(Zx → (Mx ∨Ax))

6. There are reptiles which are not alligators.
∃x(Rx ∧ ¬Ax)

7. If any animal is an reptile, then Amos is.
∃xRx → Ra

8. If any animal is an alligator, then it is a reptile.
∀x(Ax → Rx)

D. For each argument, write a symbolisation key and symbolise the argument
in FOL.

1. Willard is a logician. All logicians wear funny hats. So Willard wears a
funny hat
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domain: people
L: is a logician
H: wears a funny hat
i: Willard

Li,∀x(Lx → Hx) .˙. Hi
2. Nothing on my desk escapes my attention. There is a computer on my

desk. As such, there is a computer that does not escape my attention.

domain: physical things
D: is on my desk
E: escapes my attention
C: is a computer

∀x(Dx → ¬Ex),∃x(Dx ∧ Cx) .˙. ∃x(Cx ∧ ¬Ex)
3. All my dreams are black and white. Old TV shows are in black and

white. Therefore, some of my dreams are old TV shows.

domain: episodes (psychological and televised)
D: is one of my dreams
B: is in black and white
O: is an old TV show

∀x(Dx → Bx),∀x(Ox → Bx) .˙. ∃x(Dx ∧Ox).
Comment: generic statements are tricky to deal with. Does the second
sentence mean that all old TV shows are in black and white; or that most
of them are; or that most of the things which are in black and white are
old TV shows? I have gone with the former, but it is not clear that FOL
deals with these well.

4. Neither Holmes nor Watson has been to Australia. A person could see
a kangaroo only if they had been to Australia or to a zoo. Although
Watson has not seen a kangaroo, Holmes has. Therefore, Holmes has
been to a zoo.

domain: people
A: has been to Australia
K: has seen a kangaroo
Z: has been to a zoo
h: Holmes
a: Watson

¬Ah ∧ ¬Aa,∀x(Kx → (Ax ∨ Zx)),¬Ka ∧Kh .˙. Zh
5. No one expects the Spanish Inquisition. No one knows the troubles I’ve

seen. Therefore, anyone who expects the Spanish Inquisition knows the
troubles I’ve seen.

domain: people
S: expects the Spanish Inquisition
T : knows the troubles I’ve seen

∀x¬Sx,∀x¬Tx .˙. ∀x(Sx → Tx)
6. All babies are illogical. Nobody who is illogical can manage a crocodile.

Berthold is a baby. Therefore, Berthold is unable to manage a crocodile.

domain: people
B: is a baby
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I: is illogical
C: can manage a crocodile
b: Berthold

∀x(Bx → Ix),∀x(Ix → ¬Cx), Bb .˙. ¬Cb
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A. Using this symbolisation key:

domain: all animals
A: 1 is an alligator
M : 1 is a monkey
R: 1 is a reptile
Z: 1 lives at the zoo
L: 1 loves 2

a: Amos
b: Bouncer
c: Cleo

symbolise each of the following sentences in FOL:

1. If Cleo loves Bouncer, then Bouncer is a monkey.
Lcb → Mb

2. If both Bouncer and Cleo are alligators, then Amos loves them both.
(Ab ∧Ac) → (Lab ∧ Lac)

3. Cleo loves a reptile.
∃x(Rx ∧ Lcx)
Comment: this English expression is ambiguous; in some contexts, it can
be read as a generic, along the lines of ‘Cleo loves reptiles’. (Compare ‘I
do love a good pint’.)

4. Bouncer loves all the monkeys that live at the zoo.
∀x((Mx ∧ Zx) → Lbx)

5. All the monkeys that Amos loves love him back.
∀x((Mx ∧ Lax) → Lxa)

6. Every monkey that Cleo loves is also loved by Amos.
∀x((Mx ∧ Lcx) → Lax)

7. There is a monkey that loves Bouncer, but sadly Bouncer does not recip-
rocate this love.
∃x(Mx ∧ Lxb ∧ ¬Lbx)

B. Using the following symbolisation key:

domain: all animals
C: 1 likes cartoons
D: 1 is a dog
L: 1 is larger than 2

b: Bertie

42
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e: Emerson
f : Fergis

symbolise the following sentences in FOL:

1. Bertie is a dog who likes cartoons.
Db ∧ Cb

2. Bertie, Emerson, and Fergis are all dogs.
Db ∧De ∧Df

3. Emerson is larger than Bertie, and Fergis is larger than Emerson.
Leb ∧ Lfe

4. All dogs like cartoons.
∀x(Dx → Cx)

5. Only dogs like cartoons.
∀x(Cx → Dx)
Comment: the FOL sentence just written does not require that anyone
likes cartoons. The English sentence might suggest that at least some
dogs do like cartoons?

6. There is a dog that is larger than Emerson.
∃x(Dx ∧ Lxe)

7. If there is a dog larger than Fergis, then there is a dog larger than Emer-
son.
∃x(Dx ∧ Lxf) → ∃x(Dx ∧ Lxe)

8. No animal that likes cartoons is larger than Emerson.
∀x(Cx → ¬Lxe)

9. No dog is larger than Fergis.
∀x(Dx → ¬Lxf)

10. Any animal that dislikes cartoons is larger than Bertie.
∀x(¬Cx → Lxb)
Comment: this is very poor, though! For ‘dislikes’ does not mean the
same as ‘does not like’.

11. There is an animal that is between Bertie and Emerson in size.
∃x((Lbx ∧ Lxe) ∨ (Lex ∧ Lxb))

12. There is no dog that is between Bertie and Emerson in size.
∀x

(
Dx → ¬

[
(Lbx ∧ Lxe) ∨ (Lex ∧ Lxb)

])
13. No dog is larger than itself.

∀x(Dx → ¬Lxx)
14. Every dog is larger than some dog.

∀x(Dx → ∃y(Dy ∧ Lxy))
Comment: the English sentence is potentially ambiguous here. I have
resolved the ambiguity by assuming it should be paraphrased by ‘for
every dog, there is a dog smaller than it’.

15. There is an animal that is smaller than every dog.
∃x∀y(Dy → Lyx)

16. If there is an animal that is larger than any dog, then that animal does
not like cartoons.
∀x(∀y(Dy → Lxy) → ¬Cx)
Comment: I have assumed that ‘larger than any dog’ here means ‘larger
than every dog’.
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C. Using the following symbolisation key:

domain: people
D: 1 dances ballet
F : 1 is female
M : 1 is male
C: 1 is a child of 2

S: 1 is a sibling of 2

a: Abebi
n: Naija
o: Orodena

symbolise the following arguments in FOL:

1. All of Orodena’s children are ballet dancers.
∀x(Cxo → Dx)

2. Abebi is Orodena’s daughter.
Cao ∧ Fa

3. Orodena has a daughter.
∃x(Cxo ∧ Fx)

4. Abebi is an only child.
¬∃xSxa

5. All of Orodena’s sons dance ballet.
∀x

[
(Cxo ∧Mx) → Dx

]
6. Orodena has no sons.

¬∃x(Cxo ∧Mx)
7. Abebi is Naija’s niece.

∃x(Sxn ∧ Cax ∧ Fa)
8. Orodena is Naija’s brother.

Son ∧Mo
9. Orodena’s brothers have no children.

∀x
[
(Sox ∧Mx) → ¬∃yCyx

]
10. Abebi is an aunt.

Fa ∧ ∃x(Sxa ∧ ∃yCyx)
11. Everyone who dances ballet has a brother who also dances ballet.

∀x
[
Dx → ∃y(My ∧ Syx ∧Dy)

]
12. Every female who dances ballet is the child of someone who dances ballet.

∀x
[
(Fx ∧Dx) → ∃y(Cxy ∧Dy)

]
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A. Explain why:

� ‘∃x∀y(Ay ↔ x = y)’ is a good symbolisation of ‘there is exactly one
apple’.
We might naturally read this in English thus:

� There is something, x, such that, if you choose any object at all, if
you chose an apple then you chose x itself, and if you chose x itself
then you chose an apple.

The x in question must therefore be the one and only thing which is an
apple.

� ‘∃x∃y
[
¬x = y ∧ ∀z

(
Az ↔ (x = z ∨ y = z)

)]
’ is a good symbolisation of

‘there are exactly two apples’.
Similarly to the above, we might naturally read this in English thus:

� There are two distinct things, x and y, such that if you choose any
object at all, if you chose an apple then you either chose x or y, and
if you chose either x or y then you chose an apple.

The x and y in question must therefore be the only things which are
apples, and since they are distinct, there are two of them.

45
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A. Using the following symbolisation key:

domain: people
K: 1 knows the combination to the safe
S: 1 is a spy
V : 1 is a vegetarian
T : 1 trusts 2

h: Hofthor
i: Ingmar

symbolise the following sentences in FOL:

1. Hofthor trusts a vegetarian.
∃x(V x ∧ Thx)

2. Everyone who trusts Ingmar trusts a vegetarian.
∀x

[
Txi → ∃y(Txy ∧ V y)

]
3. Everyone who trusts Ingmar trusts someone who trusts a vegetarian.

∀x
[
Txi → ∃y

(
Txy ∧ ∃z(Tyz ∧ V z)

)]
4. Only Ingmar knows the combination to the safe.

∀x(Kx → x = i)
Comment: does the English claim entail that Ingmar does know the
combination to the safe? If so, then we should formalise this with a ‘↔’.

5. Ingmar trusts Hofthor, but no one else.
∀x(Tix ↔ x = h)

6. The person who knows the combination to the safe is a vegetarian.
∃x

[
Kx ∧ ∀y(Ky → x = y) ∧ V x

]
7. The person who knows the combination to the safe is not a spy.

∃x
[
Kx ∧ ∀y(Ky → x = y) ∧ ¬Sx

]
Comment: the scope of negation is potentially ambiguous here; I have
read it as inner negation.

B. Using the following symbolisation key:

domain: cards in a standard deck
B: 1 is black
C: 1 is a club
D: 1 is a deuce
J : 1 is a jack
M : 1 is a man with an axe
O: 1 is one-eyed
W : 1 is wild
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symbolise each sentence in FOL:

1. All clubs are black cards.
∀x(Cx → Bx)

2. There are no wild cards.
¬∃xWx

3. There are at least two clubs.
∃x∃y(¬x = y ∧ Cx ∧ Cy)

4. There is more than one one-eyed jack.
∃x∃y(¬x = y ∧ Jx ∧Ox ∧ Jy ∧Oy)

5. There are at most two one-eyed jacks.
∀x∀y∀z

[
(Jx ∧Ox ∧ Jy ∧Oy ∧ Jz ∧Oz) → (x = y ∨ x = z ∨ y = z)

]
6. There are two black jacks.

∃x∃y(¬x = y ∧Bx ∧ Jx ∧By ∧ Jy)
Comment: I am reading this as ‘there are at least two. . . ’. If the sugges-
tion was that there are exactly two, then a different FOL sentence would
be required, namely:
∃x∃y

(
¬x = y ∧Bx ∧ Jx ∧By ∧ Jy ∧ ∀z[(Bz ∧ Jz) → (x = z ∨ y = z)]

)
7. There are four deuces.

∃w∃x∃y∃z(¬w = x ∧ ¬w = y ∧ ¬w = z ∧ ¬x = y ∧ ¬x = z ∧ ¬y =
z ∧Dw ∧Dx ∧Dy ∧Dz)
Comment: I am reading this as ‘there are at least four. . . ’. If the sugges-
tion is that there are exactly four, then we should offer instead:
∃w∃x∃y∃z

(
¬w = x ∧ ¬w = y ∧ ¬w = z ∧ ¬x = y ∧ ¬x = z ∧ ¬y =

z ∧Dw ∧Dx ∧Dy ∧Dz ∧ ∀v[Dv → (v = w ∨ v = x ∨ v = y ∨ v = z)]
)

8. The deuce of clubs is a black card.
∃x

[
Dx ∧ Cx ∧ ∀y

(
(Dy ∧ Cy) → x = y

)
∧Bx

]
9. One-eyed jacks and the man with the axe are wild.

∀x
[
(Jx ∧Ox) → Wx

]
∧ ∃x

[
Mx ∧ ∀y(My → x = y) ∧Wx

]
10. If the deuce of clubs is wild, then there is exactly one wild card.

∃x
(
Dx ∧ Cx ∧ ∀y

[
(Dy ∧ Cy) → x = y

]
∧ Wx

)
→ ∃x

(
Wx ∧ ∀y(Wy →

x = y)
)

Comment: if there is not exactly one deuce of clubs, then the above
sentence is true. Maybe that’s the wrong verdict. Perhaps the sentence
should definitely be taken to imply that there is one and only one deuce
of clubs, and then express a conditional about wildness. If so, then we
might symbolise it thus:
∃x

(
Dx ∧ Cx ∧ ∀y

[
(Dy ∧ Cy) → x = y

]
∧
[
Wx → ∀y(Wy → x = y)

])
11. The man with the axe is not a jack.

∃x
[
Mx ∧ ∀y(My → x = y) ∧ ¬Jx

]
12. The deuce of clubs is not the man with the axe.

∃x∃y
(
Dx∧Cx∧∀z[(Dz∧Cz) → x = z]∧My∧∀z(Mz → y = z)∧¬x = y

)
C. Using the following symbolisation key:

domain: animals in the world
B: 1 is in Farmer Brown’s field
H: 1 is a horse
C: 1 is a cow
F : 1 is faster than 2
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r: Redrum

symbolise the following sentences in FOL:

1. There are at least three horses in the world.
∃x∃y∃z(¬z = x ∧ ¬z = y ∧ ¬y = x ∧Hx ∧Hy ∧Hz)

2. There are at least three animals in the world.
∃x∃y∃z(¬z = x ∧ ¬z = y ∧ ¬y = x)

3. There is more than one horse in Farmer Brown’s field.
∃x∃y(¬x = y ∧Hx ∧Hy ∧Bx ∧By)

4. Every horse is faster than every cow.
∀x∀y

[
(Hx ∧ Cy) → Fxy

]
5. Redrum is faster than every cow in Farmer Brown’s field.

∀x
[
(Hx ∧Bx) → Frx

]
6. There is a cow in Farmer Brown’s field that is faster than a horse in

Farmer Brown’s field.
∃x∃y(Cx ∧Bx ∧Hy ∧By ∧ Fxy)

7. Redrum is faster than every other horse.
∀x

[
(Hx ∧ ¬x = r) → Frx

]
8. The fastest horse is in Farmer Brown’s field.

∃x
[
Hx ∧ ∀y

(
(Hy ∧ ¬x = y) → Fxy

)
∧Bx

]
9. The fastest horse in Farmer Brown’s field is faster than Redrum.

∃x
[
Hx ∧Bx ∧ ∀y

(
(Hy ∧By ∧ ¬x = y) → Fxy

)
∧ Fxr

]
10. The fastest horse in Farmer Brown’s field is faster than the fastest cow

in the world.
∃x∃y

[
Hx ∧Bx ∧ ∀z

(
(Hz ∧Bz ∧ ¬x = z) → Fxz

)
∧ Cy ∧

∀z
(
(Cz ∧ ¬y = z) → Fyz

)
∧ Fxy

]
D. In this section, we symbolised ‘Jonny is the keyboardist’ by ‘∃x(Kx ∧
∀y(Ky → x = y) ∧ x = j)’. Two equally good symbolisations would be:

� Kj ∧ ∀y(Ky → y = j)
This sentence requires that Jonny is a keyboardist, and that Jonny alone
is a keyboardist. Otherwise put, there is one and only one keyboardist,
namely Jonny. Otherwise otherwise put: Jonny is the keyboardist.

� ∀y(Ky ↔ y = j)
This sentence can be understood thus: Take anything you like; now, if
you chose a keyboardist, then you chose Jonny; and if you chose Jonny,
then you chose a keyboardist. So there is one and only one keyboardist,
namely Jonny, as required.

Explain why these would be equally good symbolisations.
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A. Identify which variables are bound and which are free. I shall underline the
bound variables, and put free variables in blue.

1. ∃xLxy ∧ ∀yLyx
2. ∀xAx ∧Bx
3. ∀x(Ax ∧Bx) ∧ ∀y(Cx ∧Dy)
4. ∀x∃y[Rxy → (Jz ∧Kx)] ∨Ryx
5. ∀x1(Mx2 ↔ Lx2x1) ∧ ∃x2Lx3x2

49



Truth in FOL 26

A. Consider the following interpretation:

domain: Corwin, Benedict
A: Corwin, Benedict
B: Benedict

N1:
c: Corwin

Determine whether each of the following sentences is true or false in that in-
terpretation:

1. Bc False
2. Ac ↔ ¬Nc True
3. Nc → (Ac ∨Bc) True
4. ∀xAx True
5. ∀x¬Bx False
6. ∃x(Ax ∧Bx) True
7. ∃x(Ax → Nx) False
8. ∀x(Nx ∨ ¬Nx) True
9. ∃xBx → ∀xAx True

B. Consider the following interpretation:

domain: Luda, Capriana, Edgar
G: Luda, Capriana, Edgar
H: Capriana
M : Luda, Edgar
c: Capriana
e: Edgar

Determine whether each of the following sentences is true or false in that in-
terpretation:

1. Hc True
2. He False
3. Mc ∨Me True
4. Gc ∨ ¬Gc True
5. Mc → Gc True
6. ∃xHx True
7. ∀xHx False
8. ∃x¬Mx True
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9. ∃x(Hx ∧Gx) True
10. ∃x(Mx ∧Gx) True
11. ∀x(Hx ∨Mx) True
12. ∃xHx ∧ ∃xMx True
13. ∀x(Hx ↔ ¬Mx) True
14. ∃xGx ∧ ∃x¬Gx False
15. ∀x∃y(Gx ∧Hy) True

C. Following the diagram conventions introduced at the end of §23, consider
the following interpretation:

1 2

3 4 5

Determine whether each of the following sentences is true or false in that in-
terpretation:

1. ∃xRxx True
2. ∀xRxx False
3. ∃x∀yRxy True
4. ∃x∀yRyx False
5. ∀x∀y∀z((Rxy ∧Ryz) → Rxz) False
6. ∀x∀y∀z((Rxy ∧Rxz) → Ryz) False
7. ∃x∀y¬Rxy True
8. ∀x(∃yRxy → ∃yRyx) True
9. ∃x∃y(¬x = y ∧Rxy ∧Ryx) True

10. ∃x∀y(Rxy ↔ x = y) True
11. ∃x∀y(Ryx ↔ x = y) False
12. ∃x∃y(¬x = y ∧Rxy ∧ ∀z(Rzx ↔ y = z)) True
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There are lots of right answers to the questions in this section. All of the
interpretations that I will present will be highly artificial. In each case, I will
use a small collection of numbers as my domain, and I will directly stipulate
the extensions of the predicates. But to repeat, these are not the only right
answers!

A. Show that each of the following is neither a logical truth nor a contradiction:
This requires presenting two interpretations for each sentence: one which makes
the sentence true, and one which makes it false.

1. Da ∧Db
An interpretation which makes sentence 1 true:

domain: 0
D: 0
a: 0
b: 0

An interpretation which makes sentence 1 false:

domain: 0, 1
D: 0
a: 0
b: 1

2. ∃xTxh
An interpretation which makes sentence 2 true:

domain: 0
T : <0,0>
h: 0
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An interpretation which makes sentence 2 false:

domain: 0
T :
h: 0

3. Pm ∧ ¬∀xPx
An interpretation which makes sentence 3 true:

domain: 0, 1
P : 0
m: 0

An interpretation which makes sentence 3 false:

domain: 0, 1
P : 0
m: 1

4. ∀zJz ↔ ∃yJy
An interpretation which makes sentence 4 true:

domain: 0
J : 0

An interpretation which makes sentence 4 false:

domain: 0, 1
J : 0

5. ∀x(Wxmn ∨ ∃yLxy)
An interpretation which makes sentence 5 true:

domain: 0
W : <0,0,0>
L:
m: 0
n: 0

An interpretation which makes sentence 5 false:

domain: 0
W :
L:
m: 0
n: 0

6. ∃x(Gx → ∀yMy)
An interpretation which makes sentence 6 true:

domain: 0
G: 0
M : 0

An interpretation which makes sentence 6 false:

domain: 0
G: 0
M :

7. ∃x(x = h ∧ x = i)
An interpretation which makes sentence 7 true:
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domain: 0
h: 0
i: 0

An interpretation which makes sentence 7 false:

domain: 0,1
h: 0
i: 1

B. Show that the following pairs of sentences are not equivalent in FOL.
To show that a pair of sentence are not equivalent in FOL, we just need to
present an interpretation which makes one of the sentences true, and the other
false.

1. Ja, Ka

domain: 0
J : 0
K:
a: 0

This interpretation makes ‘Ja’ true and ‘Ka’ false.
2. ∃xJx, Jm

domain: 0, 1
J : 0
m: 1

This interpretation makes ‘∃xJx’ true and ‘Jm’ false.
3. ∀xRxx, ∃xRxx

domain: 0, 1
R: <0,0>

This interpretation makes ‘∃xRxx’ true and ‘∀xRxx’ false.
4. ∃xPx → Qc, ∃x(Px → Qc)

domain: 0, 1
P : 0
Q:
c: 0

This interpretation obviously makes ‘∃xPx → Qc’ false. It also makes
‘∃x(Px → Qc)’ true: ‘Px’ is false of 1, and so ‘Px → Qc’ is vacuously
true of 1.

5. ∀x(Px → ¬Qx), ∃x(Px ∧ ¬Qx)

domain: 0
P :
Q:

This interpretation makes ‘∀x(Px → ¬Qx)’ vacuously true, and ‘∃x(Px∧
¬Qx)’ false.

6. ∃x(Px ∧Qx), ∃x(Px → Qx)

domain: 0
P :
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Q:

This interpretation obviously makes ‘∃x(Px ∧ Qx)’ false. It also makes
‘∃x(Px → Qx)’ true: ‘Px’ is false of 0, and so ‘Px → Qx’ is vacuously
true of 0.

7. ∀x(Px → Qx), ∀x(Px ∧Qx)

domain: 0
P :
Q:

This interpretation obviously makes ‘∀x(Px ∧ Qx)’ false. It also makes
‘∀x(Px → Qx)’ true: ‘Px’ is false of 0, so ‘Px → Qx’ is vacuously true
of 0, and 0 is the only object in the domain.

8. ∀x∃yRxy, ∃x∀yRxy

domain: 0, 1
R: <0,1>, <1,0>

This interpretation makes ‘∀x∃yRxy’ true and ‘∃x∀yRxy’ false.
9. ∀x∃yRxy, ∀x∃yRyx

domain: 0, 1
R: <0,1>, <1,1>

This interpretation makes ‘∀x∃yRxy’ true and ‘∀x∃yRyx’ false.

C. Show that the following sentences are jointly consistent in FOL:
To show that a collection of sentences are jointly consistent in FOL, we just
need to present an interpretation which makes all of those sentences true.

1. Ma,¬Na,Pa,¬Qa

domain: 0
M : 0
N :
P : 0
Q:
a: 0

2. Lee, Leg,¬Lge,¬Lgg
domain: 0, 1

L: <0,0>, <0,1>
e: 0
g: 1
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3. ¬(Ma ∧ ∃xAx),Ma ∨ Fa,∀x(Fx → Ax)

domain: 0
M :
F : 0
A: 0
a: 0

4. Ma ∨Mb,Ma → ∀x¬Mx

domain: 0,1
M : 1
a: 0
b: 1

This sentence obviously makes ‘Ma ∨ Mb’ true. It also makes ‘Ma →
∀x¬Mx’ vacuously true, since it makes ‘Ma’ false.

5. ∀yGy,∀x(Gx → Hx),∃y¬Iy
domain: 0

G: 0
H: 0
I:

6. ∃x(Bx ∨Ax),∀x¬Cx,∀x
[
(Ax ∧Bx) → Cx

]
domain: 0

A: 0
B:
C:

7. ∃xXx, ∃xY x, ∀x(Xx ↔ ¬Y x)

domain: 0, 1
X: 0
Y : 1

This interpretation obviously makes ‘∃xXx’ and ‘∃xY x’ true. It also
makes ‘∀x(Xx ↔ ¬Y x)’ true: ‘Xx ↔ ¬Y x’ is true of 0, since ‘Xx’ is
true of 0 but ‘Y x’ isn’t, and ‘Xx ↔ ¬Y x’ is true of 1, since ‘Y x’ is true
of 1 and ‘Xx’ isn’t.

8. ∀x(Px ∨Qx),∃x¬(Qx ∧ Px)

domain: 0
P : 0
Q:

9. ∃z(Nz ∧Ozz),∀x∀y(Oxy → Oyx)

domain: 0
N : 0
O: <0,0>

10. ¬∃x∀yRxy, ∀x∃yRxy

domain: 0, 1
R: <0,1>, <1,0>
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11. ¬Raa, ∀x(x = a ∨Rxa)

domain: 0
R:
a: 0

12. ∀x∀y∀z(x = y ∨ y = z ∨ x = z), ∃x∃y ¬x = y

domain: 0, 1

This interpretation makes ‘∀x∀y∀z(x = y ∨ y = z ∨ x = z)’ true: this
sentence is true just in case there are no more than 2 objects in the
domain. It also makes ‘∃x∃y ¬x = y’ true: this sentence is true just in
case there are at least 2 objects in the domain.

13. ∃x∃y(Zx ∧ Zy ∧ x = y), ¬Zd, d = e

domain: 0, 1
Z: 0
d: 1
e: 1

D. Show that the following arguments are invalid in FOL:
To show that an FOL argument is invalid in FOL, we need to present an
interpretation which makes all of the premises true, and makes the conclusion
false.

1. ∀x(Ax → Bx) .˙. ∃xBx

domain: 0
A:
B:

2. ∀x(Rx → Dx),∀x(Rx → Fx) .˙. ∃x(Dx ∧ Fx)

domain: 0
R:
D:
F :

3. ∃x(Px → Qx) .˙. ∃xPx

domain: 0
P :
Q:

4. Na ∧Nb ∧Nc .˙. ∀xNx

domain: 0, 1
N : 0
a: 0
b: 0
c: 0

5. Rde,∃xRxd .˙. Red

domain: 0, 1, 2
R: <0,1>, <2,0>
d: 0
e: 1
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6. ∃x(Ex ∧ Fx),∃xFx → ∃xGx .˙. ∃x(Ex ∧Gx)

domain: 0, 1
E: 0
F : 0
G: 1

7. ∀xOxc,∀xOcx .˙. ∀xOxx

domain: 0, 1
O: <0,1>, <1,1>, <1,0>
c: 1

8. ∃x(Jx ∧Kx),∃x¬Kx,∃x¬Jx .˙. ∃x(¬Jx ∧ ¬Kx)

domain: 0, 1, 2
J : 0, 1
K: 0, 2

9. Lab → ∀xLxb, ∃xLxb .˙. Lbb
domain: 0, 1, 2

L: <2,1>
a: 0
b: 1

10. ∀x(Dx → ∃yTyx) .˙. ∃y∃z ¬y = z

domain: 0
D: 0
T : <0,0>

We could have made the premise true just by giving ‘D’ and ‘T ’ empty
extensions. However, the above interpretation reminds us of an important
point: ‘∃yTyx’ should not be read as saying: there is some y other than
x such that Tyx.
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A. The following two ‘proofs’ are incorrect. Explain why both are incorrect.
Also, provide interpretations which show that the corresponding arguments are
invalid in FOL:

1 ∀xRxx

2 Raa ∀E 1

3 ∀yRay ∀I 2

4 ∀x∀yRxy ∀I 3

When using ∀I, you must replace all
names with the new variable. So line
3 is bogus. As a counterinterpreta-
tion, consider the following:

1 2

1 ∀x∃yRxy

2 ∃yRay ∀E 1

3 Raa

4 ∃xRxx ∃I 3

5 ∃xRxx ∃E 2, 3–4

The instantiating constant, ‘a’, oc-
curs in the line (line 2) to which ∃E is
to be applied on line 5. So the use of
∃E on line 5 is bogus. As a counterin-
terpretation, consider the following:

1 2

B. The following three proofs are missing their citations (rule and line num-
bers). Add them, to turn them into bona fide proofs.

1 ∀x∃y(Rxy ∨Ryx)

2 ∀x¬Rmx

3 ∃y(Rmy ∨Rym) ∀E 1

4 Rma ∨Ram

5 ¬Rma ∀E 2

6 Ram DS 4, 5

7 ∃xRxm ∃I 6

8 ∃xRxm ∃E 3, 4–7

1 ∀x(∃yLxy → ∀zLzx)

2 Lab

3 ∃yLay → ∀zLza ∀E 1

4 ∃yLay ∃I 2

5 ∀zLza →E 3, 4

6 Lca ∀E 5

7 ∃yLcy → ∀zLzc ∀E 1

8 ∃yLcy ∃I 6

9 ∀zLzc →E 7, 8

10 Lcc ∀E 9

11 ∀xLxx ∀I 10

59
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1 ∀x(Jx → Kx)

2 ∃x∀yLxy

3 ∀xJx

4 ∀yLay

5 Laa ∀E 4

6 Ja ∀E 3

7 Ja → Ka ∀E 1

8 Ka →E 7, 6

9 Ka ∧ Laa ∧I 8, 5

10 ∃x(Kx ∧ Lxx) ∃I 9

11 ∃x(Kx ∧ Lxx) ∃E 2, 4–10

C. In §20 problem part A, we considered fifteen syllogistic figures of Aristotelian
logic. Provide proofs for each of the argument forms. NB: You will find it much
easier if you symbolise (for example) ‘No F is G’ as ‘∀x(Fx → ¬Gx)’.
I shall prove the four Figure I syllogisms; the rest are extremely similar.

Barbara
1 ∀x(Gx → Fx)

2 ∀x(Hx → Gx)

3 Ga → Fa ∀E 1

4 Ha → Ga ∀E 2

5 Ha

6 Ga →E 4, 5

7 Fa →E 3, 6

8 Ha → Fa →I 5–7

9 ∀x(Hx → Fx) ∀I 8

Celerant is exactly as Barbara, re-
placing ‘F ’ with ‘¬F ’ throughout.

Ferio

1 ∀x(Gx → ¬Fx)

2 ∃x(Hx ∧Gx)

3 Ha ∧Ga

4 Ha ∧E 3

5 Ga ∧E 3

6 Ga → ¬Fa ∀E 1

7 ¬Fa →E 6, 5

8 Ha ∧ ¬Fa ∧I 4, 7

9 ∃x(Hx ∧ ¬Fx) ∃I 8

10 ∃x(Hx ∧ ¬Fx) ∃E 2, 3–9

Darii is exactly as Ferio, replacing
‘¬F ’ with ‘F ’ throughout.

D. Aristotle and his successors identified other syllogistic forms which de-
pended upon ‘existential import’. Symbolise each of the following argument
forms in FOL and offer proofs.
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� Barbari. Something is H. All G are F. All H are G. So: Some H is F
∃xHx, ∀x(Gx → Fx),∀x(Hx → Gx) .˙. ∃x(Hx ∧ Fx)

1 ∃xHx

2 ∀x(Gx → Fx)

3 ∀x(Hx → Gx)

4 Ha

5 Ha → Ga ∀E 3

6 Ga →E 5, 4

7 Ga → Fa ∀E 2

8 Fa →E 7, 6

9 Ha ∧ Fa ∧I 4, 8

10 ∃x(Hx ∧ Fx) ∃I 9

11 ∃x(Hx ∧ Fx) ∃E 1, 4–10

� Celaront. Something is H. No G are F. All H are G. So: Some H is not
F
∃xHx, ∀x(Gx → ¬Fx),∀x(Hx → Gx) .˙. ∃x(Hx ∧ ¬Fx)
Proof is exactly as for Barbari, replacing ‘F ’ with ‘¬F ’ throughout.

� Cesaro. Something is H. No F are G. All H are G. So: Some H is not F.
∃xHx, ∀x(Fx → ¬Gx),∀x(Hx → Gx) .˙. ∃x(Hx ∧ ¬Fx)

1 ∃xHx

2 ∀x(Fx → ¬Gx)

3 ∀x(Hx → Gx)

4 Ha

5 Ha → Ga ∀E 3

6 Ga →E 5, 4

7 Fa → ¬Ga ∀E 2

8 Fa

9 ¬Ga →E 7, 8

10 ⊥ ⊥I 6, 9

11 ¬Fa ¬I 8–10

12 Ha ∧ ¬Fa ∧I 4, 11

13 ∃x(Hx ∧ ¬Fx) ∃I 12

14 ∃x(Hx ∧ ¬Fx) ∃E 1, 4–13
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� Camestros. Something is H. All F are G. No H are G. So: Some H is
not F.
∃xHx, ∀x(Fx → Gx),∀x(Hx → ¬Gx) .˙. ∃x(Hx ∧ ¬Fx)

1 ∃xHx

2 ∀x(Fx → Gx)

3 ∀x(Hx → ¬Gx)

4 Ha

5 Ha → ¬Ga ∀E 3

6 ¬Ga →E 5, 4

7 Fa → Ga ∀E 2

8 ¬Fa MT 7, 6

9 Ha ∧ ¬Fa ∧I 4, 8

10 ∃x(Hx ∧ ¬Fx) ∃I 9

11 ∃x(Hx ∧ ¬Fx) ∃E 1, 4–10

� Felapton. Something is G. No G are F. All G are H. So: Some H is not
F.
∃xGx,∀x(Gx → ¬Fx),∀x(Gx → Hx) .˙. ∃x(Hx ∧ ¬Fx)

1 ∃xGx

2 ∀x(Gx → ¬Fx)

3 ∀x(Gx → Hx)

4 Ga

5 Ga → Ha ∀E 3

6 Ha →E 5, 4

7 Ga → ¬Fa ∀E 2

8 ¬Fa →E 7, 4

9 Ha ∧ ¬Fa ∧I 6, 8

10 ∃x(Hx ∧ ¬Fx) ∃I 9

11 ∃x(Hx ∧ ¬Fx) ∃E 1, 4–10

� Darapti. Something is G. All G are F. All G are H. So: Some H is F.
∃xGx,∀x(Gx → Fx),∀x(Gx → Hx) .˙. ∃x(Hx ∧ Fx)
Proof is exactly as for Felapton, replacing ‘¬F ’ with ‘F ’ throughout.
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� Calemos. Something is H. All F are G. No G are H. So: Some H is not
F.
∃xHx, ∀x(Fx → Gx),∀x(Gx → ¬Hx) .˙. ∃x(Hx ∧ ¬Fx)

1 ∃xHx

2 ∀x(Fx → Gx)

3 ∀x(Gx → ¬Hx)

4 Ha

5 Ga → ¬Ha ∀E 3

6 Ga

7 ¬Ha →E 5, 6

8 ⊥ ⊥I 4, 7

9 ¬Ga ¬I 6–8

10 Fa → Ga ∀E 2

11 ¬Fa MT 10, 9

12 Ha ∧ ¬Fa ∧I 4, 11

13 ∃x(Hx ∧ ¬Fx) ∃I 12

14 ∃x(Hx ∧ ¬Fx) ∃E 1, 4–13

� Fesapo. Something is G. No F is G. All G are H. So: Some H is not F.
∃xGx,∀x(Fx → ¬Gx),∀x(Gx → Hx) .˙. ∃x(Hx ∧ ¬Fx)

1 ∃xGx

2 ∀x(Fx → ¬Gx)

3 ∀x(Gx → Hx)

4 Ga

5 Ga → Ha ∀E 3

6 Ha →E 5, 4

7 Fa → ¬Ga ∀E 2

8 Fa

9 ¬Ga →E 7, 8

10 ⊥ ⊥I 4, 9

11 ¬Fa ¬I 8–10

12 Ha ∧ ¬Fa ∧I 6, 11

13 ∃x(Hx ∧ ¬Fx) ∃I 12

14 ∃x(Hx ∧ ¬Fx) ∃E 1, 4–13
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� Bamalip. Something is F. All F are G. All G are H. So: Some H are F.
∃xFx,∀x(Fx → Gx),∀x(Gx → Hx) .˙. ∃x(Hx ∧ Fx)

1 ∃xFx

2 ∀x(Fx → Gx)

3 ∀x(Gx → Hx)

4 Fa

5 Fa → Ga ∀E 2

6 Ga →E 5, 4

7 Ga → Ha ∀E 3

8 Ha →E 7, 6

9 Ha ∧ Fa ∧I 8, 4

10 ∃x(Hx ∧ Fx) ∃I 9

11 ∃x(Hx ∧ Fx) ∃E 1, 4–10

E. Provide a proof of each claim.

1. ` ∀xFx ∨ ¬∀xFx
1 ∀xFx

2 ∀xFx ∨ ¬∀xFx ∨I 1

3 ¬∀xFx

4 ∀xFx ∨ ¬∀xFx ∨I 3

5 ∀xFx ∨ ¬∀xFx TND 1–2, 3–4

2. ` ∀z(Pz ∨ ¬Pz)

1 Pa

2 Pa ∨ ¬Pa ∨I 1

3 ¬Pa

4 Pa ∨ ¬Pa ∨I 3

5 Pa ∨ ¬Pa TND 1–2, 3–4

6 ∀z(Pz ∨ ¬Pz) ∀I 5

3. ∀x(Ax → Bx),∃xAx ` ∃xBx

1 ∀x(Ax → Bx)

2 ∃xAx

3 Aa

4 Aa → Ba ∀E 1

5 Ba →E 4, 3

6 ∃xBx ∃I 5

7 ∃xBx ∃E 2, 3–6
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4. ∀x(Mx ↔ Nx),Ma ∧ ∃xRxa ` ∃xNx

1 ∀x(Mx ↔ Nx)

2 Ma ∧ ∃xRxa

3 Ma ∧E 2

4 Ma ↔ Na ∀E 1

5 Na ↔E 4, 3

6 ∃xNx ∃I 5

5. ∀x∀yGxy ` ∃xGxx

1 ∀x∀yGxy

2 ∀yGay ∀E 1

3 Gaa ∀E 2

4 ∃xGxx ∃I 3

6. ` ∀xRxx → ∃x∃yRxy

1 ∀xRxx

2 Raa ∀E 1

3 ∃yRay ∃I 2

4 ∃x∃yRxy ∃I 3

5 ∀xRxx → ∃x∃yRxy →I 1–4

7. ` ∀y∃x(Qy → Qx)

1 Qa

2 Qa R 1

3 Qa → Qa →I 1–2

4 ∃x(Qa → Qx) ∃I 3

5 ∀y∃x(Qy → Qx) ∀I 4

8. Na → ∀x(Mx ↔ Ma),Ma,¬Mb ` ¬Na

1 Na → ∀x(Mx ↔ Ma)

2 Ma

3 ¬Mb

4 Na

5 ∀x(Mx ↔ Ma) →E 1, 4

6 Mb ↔ Ma ∀E 5

7 Mb ↔E 6, 2

8 ⊥ ⊥I 7, 3

9 ¬Na ¬I 4–8
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9. ∀x∀y(Gxy → Gyx) ` ∀x∀y(Gxy ↔ Gyx)

1 ∀x∀y(Gxy → Gyx)

2 Gab

3 ∀y(Gay → Gya) ∀E 1

4 Gab → Gba ∀E 3

5 Gba →E 4, 2

6 Gba

7 ∀y(Gby → Gyb) ∀E 1

8 Gba → Gab ∀E 7

9 Gab →E 8, 6

10 Gab ↔ Gba ↔I 2–5, 6–9

11 ∀y(Gay ↔ Gya) ∀I 10

12 ∀x∀y(Gxy ↔ Gyx) ∀I 11

10. ∀x(¬Mx ∨ Ljx),∀x(Bx → Ljx),∀x(Mx ∨Bx) ` ∀xLjx
1 ∀x(¬Mx ∨ Ljx)

2 ∀x(Bx → Ljx)

3 ∀x(Mx ∨Bx)

4 ¬Ma ∨ Lja ∀E 1

5 Ba → Lja ∀E 2

6 Ma ∨Ba ∀E 3

7 ¬Ma

8 Ba DS 6, 7

9 Lja →E 5, 8

10 Lja

11 Lja R 10

12 Lja ∨E 4, 7–9, 10–11

13 ∀xLjx ∀I 12

F. Write a symbolisation key for the following argument, symbolise it, and
prove it:

There is someone who likes everyone who likes everyone that she
likes. Therefore, there is someone who likes herself.

Symbolisation key:

domain: all people
Lxy: x likes y

∃x∀y(∀z(Lxz → Lyz) → Lxy) .˙. ∃xLxx
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1 ∃x∀y(∀z(Lxz → Lyz) → Lxy)

2 ∀y(∀z(Laz → Lyz) → Lay)

3 ∀z(Laz → Laz) → Laa ∀E 2

4 Lac

5 Lac R 4

6 Lac → Lac →I 4–5

7 ∀z(Laz → Laz) ∀I 6

8 Laa →E 3, 7

9 ∃xLxx ∃I 8

10 ∃xLxx ∃E 1, 2––9

G. For each of the following pairs of sentences: If they are provably equivalent,
give proofs to show this. If they are not, construct an interpretation to show
that they are not equivalent in FOL.

1. ∀xPx → Qc,∀x(Px → Qc) Not equivalent in FOL
Counter-interpretation: let the domain be the numbers 1 and 2. Let ‘c’
name 1. Let ‘Px’ be true of and only of 1. Let ‘Qx’ be true of, and only
of, 2.

2. ∀x∀y∀zBxyz,∀xBxxx Not equivalent in FOL
Counter-interpretation: let the domain be the numbers 1 and 2. Let
‘Bxyz’ be true of, and only of, <1,1,1> and <2,2,2>.

3. ∀x∀yDxy,∀y∀xDxy Provably equivalent

1 ∀x∀yDxy

2 ∀yDay ∀E 1

3 Dab ∀E 2

4 ∀xDxb ∀I 3

5 ∀y∀xDxy ∀I 4

1 ∀y∀xDxy

2 ∀xDxa ∀E 1

3 Dba ∀E 2

4 ∀yDby ∀I 3

5 ∀x∀yDxy ∀I 4

4. ∃x∀yDxy,∀y∃xDxy Not equivalent in FOL
Counter-interpretation: let the domain be the numbers 1 and 2. Let
‘Dxy’ hold of and only of <1,2> and <2,1>. This is depicted thus:

1 2

5. ∀x(Rca ↔ Rxa), Rca ↔ ∀xRxa Not equivalent in FOL
Counter-interpretation, consider the following diagram, allowing ‘a’ to
name 1 and ‘c’ to name 2:

1 2
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H. For each of the following arguments: If it is valid in FOL, give a proof. If
it is invalid in FOL, construct an interpretation to show that it is invalid in
FOL.

1. ∃y∀xRxy .˙. ∀x∃yRxy Valid in FOL

1 ∃y∀xRxy

2 ∀xRxa

3 Rba ∀E 2

4 ∃yRby ∃I 3

5 ∃yRby ∃E 1, 2–4

6 ∀x∃yRxy ∀I 5

2. ∃x(Px ∧ ¬Qx) .˙. ∀x(Px → ¬Qx) Invalid in FOL
Counter interpretation: let the domain be the numbers 1 and 2. Let ‘Px’
be true of everything in the domain. Let ‘Qx’ be true of, and only of, 2.

3. ∀x(Sx → Ta), Sd .˙. Ta Valid in FOL

1 ∀x(Sx → Ta)

2 Sd

3 Sd → Ta ∀E 1

4 Ta →E 3, 2

4. ∀x(Ax → Bx),∀x(Bx → Cx) .˙. ∀x(Ax → Cx) Valid in FOL

1 ∀x(Ax → Bx)

2 ∀x(Bx → Cx)

3 Aa → Ba ∀E 1

4 Ba → Ca ∀E 2

5 Aa

6 Ba →E 3, 5

7 Ca →E 4, 6

8 Aa → Ca →I 5–7

9 ∀x(Ax → Cx) ∀I 8

5. ∃x(Dx ∨ Ex),∀x(Dx → Fx) .˙. ∃x(Dx ∧ Fx) Invalid in FOL
Counter-interpretation: let the domain be the number 1 . Let ‘Dx’ hold
of nothing. Let both ‘Ex’ and ‘Fx’ hold of everything.

6. ∀x∀y(Rxy ∨Ryx) .˙. Rjj Valid in FOL
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1 ∀x∀y(Rxy ∨Ryx)

2 ∀y(Rjy ∨Ryj) ∀E 1

3 Rjj ∨Rjj ∀E 2

4 Rjj

5 Rjj R 4

6 Rjj

7 Rjj R 6

8 Rjj ∨E 3, 4–5, 6–7

7. ∃x∃y(Rxy ∨Ryx) .˙. Rjj Invalid in FOL
Counter-interpretation: consider the following diagram, allowing ‘j’ to
name 2.

1 2

8. ∀xPx → ∀xQx,∃x¬Px .˙. ∃x¬Qx Invalid in FOL
Counter-interpretation: let the domain be the number 1. Let ‘Px’ be
true of nothing. Let ‘Qx’ be true of everything.
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A. Offer proofs which justify the addition of the third and fourth CQ rules as
derived rules.
Justification for the third rule:
1 ¬∃xAx

2 Aa

3 ∃xAx ∃I 2

4 ⊥ ⊥I 3, 1

5 ¬Aa ¬I 2–4

6 ∀x¬Ax ∀I 5

Justification for the fourth rule:
1 ∀x¬Ax

2 ∃xAx

3 Aa

4 ¬Aa ∀E 1

5 ⊥ ⊥I 3, 4

6 ⊥ ∃E 2, 3–5

7 ¬∃xAx ¬I 2–6

B. Show that the following are jointly contrary:

1. Sa → Tm, Tm → Sa, Tm ∧ ¬Sa
1 Sa → Tm

2 Tm → Sa

3 Tm ∧ ¬Sa

4 Tm ∧E 3

5 ¬Sa ∧E 3

6 Sa →E 2, 4

7 ⊥ ⊥I 5, 6

2. ¬∃xRxa,∀x∀yRyx

70
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1 ¬∃xRxa

2 ∀x∀yRyx

3 ∀x¬Rxa CQ 1

4 ¬Rba ∀E 3

5 ∀yRya ∀E 2

6 Rba ∀E 5

7 ⊥ ⊥I 6, 4

3. ¬∃x∃yLxy, Laa
1 ¬∃x∃yLxy

2 Laa

3 ∀x¬∃yLxy CQ 1

4 ¬∃yLay ∀E 3

5 ∀y¬Lay CQ 4

6 ¬Laa ∀E 5

7 ⊥ ⊥I 2, 6

4. ∀x(Px → Qx),∀z(Pz → Rz),∀yPy,¬Qa ∧ ¬Rb

1 ∀x(Px → Qx)

2 ∀z(Pz → Rz)

3 ∀yPy

4 ¬Qa ∧ ¬Rb

5 ¬Qa ∧E 4

6 Pa → Qa ∀E 1

7 ¬Pa MT 6, 5

8 Pa ∀E 3

9 ⊥ ⊥I 8, 7

C. Show that each pair of sentences is provably equivalent:

1. ∀x(Ax → ¬Bx),¬∃x(Ax ∧Bx)

1 ∀x(Ax → ¬Bx)

2 ∃x(Ax ∧Bx)

3 Aa ∧Ba

4 Aa ∧E 3

5 Ba ∧E 3

6 Aa → ¬Ba ∀E 1

7 ¬Ba →E 6, 4

8 ⊥ ⊥I 5, 7

9 ⊥ ∃E 2, 3–8

10 ¬∃x(Ax ∧Bx) ¬I 2–9
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1 ¬∃x(Ax ∧Bx)

2 ∀x¬(Ax ∧Bx) CQ 1

3 ¬(Aa ∧Ba) ∀E 2

4 Aa

5 Ba

6 Aa ∧Ba ∧I 4, 5

7 ⊥ ⊥I 6, 3

8 ¬Ba ¬I 5–7

9 Aa → ¬Ba →I 4–8

10 ∀x(Ax → ¬Bx) ∀I 9

2. ∀x(¬Ax → Bd),∀xAx ∨Bd

1 ∀x(¬Ax → Bd)

2 ¬Aa → Bd ∀E 1

3 Bd

4 ∀xAx ∨Bd ∨I 6

5 ¬Bd

6 ¬¬Aa MT 2, 5

7 Aa DNE 6

8 ∀xAx ∀E 7

9 ∀xAx ∨Bd ∨I 8

10 ∀xAx ∨Bd TND 3–4, 5–9

1 ∀xAx ∨Bd

2 ¬Aa

3 ∀xAx

4 Aa ∀E 3

5 ⊥ ⊥I 4, 2

6 ¬∀xAx ¬I 3–5

7 Bd DS 1, 6

8 ¬Aa → Bd →I 2–7

9 ∀x(Ax → Bd) ∀I 8

D. In §20, we considered what happens when we move quantifiers ‘across’ var-
ious logical operators. Show that each pair of sentences is provably equivalent:

1. ∀x(Fx ∧Ga),∀xFx ∧Ga

1 ∀x(Fx ∧Ga)

2 Fb ∧Ga ∀E 1

3 Fb ∧E 2

4 Ga ∧E 6

5 ∀xFx ∀I 3

6 ∀xFx ∧Ga ∧I 5, 4

1 ∀xFx ∧Ga

2 ∀xFx ∧E 1

3 Ga ∧E 1

4 Fb ∀E 2

5 Fb ∧Ga ∧I 4, 3

6 ∀x(Fx ∧Ga) ∀I 5
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2. ∃x(Fx ∨Ga),∃xFx ∨Ga

1 ∃x(Fx ∨Ga)

2 Fb ∨Ga

3 Fb

4 ∃xFx ∃I 3

5 ∃xFx ∨Ga ∨I 4

6 Ga

7 ∃xFx ∨Ga ∨I 6

8 ∃xFx ∨Ga ∨E 2, 3–5, 6–7

9 ∃xFx ∨Ga ∃E 1, 2–8

1 ∃xFx ∨Ga

2 ∃xFx

3 Fb

4 Fb ∨Ga ∨I 3

5 ∃x(Fx ∨Ga) ∃I 4

6 ∃x(Fx ∨Ga) ∃E 2, 3–5

7 Ga

8 Fb ∨Ga ∨I 7

9 ∃x(Fx ∨Ga) ∃I 8

10 ∃x(Fx ∨Ga) ∨E 1, 2–6, 7–9

3. ∀x(Ga → Fx), Ga → ∀xFx

1 ∀x(Ga → Fx)

2 Ga → Fb ∀E 1

3 Ga

4 Fb →E 2, 3

5 ∀xFx ∀I 4

6 Ga → ∀xFx →I 3–5

1 Ga → ∀xFx

2 Ga

3 ∀xFx →E 1, 2

4 Fb ∀E 3

5 Ga → Fb →I 2–4

6 ∀x(Ga → Fx) ∀I 5

4. ∀x(Fx → Ga),∃xFx → Ga

1 ∀x(Fx → Ga)

2 ∃xFx

3 Fb

4 Fb → Ga ∀E 1

5 Ga →E 4, 3

6 Ga ∃E 2, 3–5

7 ∃xFx → Ga →I 2–6

1 ∃xFx → Ga

2 Fb

3 ∃xFx ∃I 2

4 Ga →E 1, 3

5 Fb → Ga →I 2–4

6 ∀x(Fx → Ga) ∀I 5
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5. ∃x(Ga → Fx), Ga → ∃xFx

1 ∃x(Ga → Fx)

2 Ga

3 Ga → Fb

4 Fb →E 3, 2

5 ∃xFx ∃I 4

6 ∃xFx ∃E 1, 3–5

7 Ga → ∃xFx →I 2–6

1 Ga → ∃xFx

2 Ga

3 ∃xFx

4 Fb

5 Ga

6 Fb R 4

7 Ga → Fb →I 5–6

8 ∃x(Ga → Fx) ∃I 7

9 ∃x(Ga → Fx) ∃E 3, 4–8

10 ¬Ga

11 Ga

12 ⊥ ⊥I 11, 10

13 Fb ⊥E 12

14 Ga → Fb →E 11–13

15 ∃x(Ga → Fx) ∃I 14

16 ∃x(Ga → Fx) TND 2–9, 10–15
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6. ∃x(Fx → Ga),∀xFx → Ga

1 ∃x(Fx → Ga)

2 ∀xFx

3 Fb → Ga

4 Fb ∀E 2

5 Ga →E 3, 4

6 Ga ∃E 1, 3–5

7 ∀xFx → Ga →I 2–6

1 ∀xFx → Ga

2 ∀xFx

3 Ga →E 1, 2

4 Fb

5 Ga R 3

6 Fb → Ga →I 4–5

7 ∃x(Fx → Ga) ∃I 6

8 ¬∀xFx

9 ∃x¬Fx CQ 8

10 ¬Fb

11 Fb

12 ⊥ ⊥I 11, 10

13 Ga ⊥E 12

14 Fb → Ga →I 11–13

15 ∃x(Fx → Ga) ∃I 14

16 ∃x(Fx → Ga) ∃E 9, 10–15

17 ∃x(Fx → Ga) TND 2–7, 8–16

NB: the variable ‘x’ does not occur in ‘Ga’.
When all the quantifiers occur at the beginning of a sentence, that sen-

tence is said to be in prenex normal form. Together with the CQ rules,
these equivalences are sometimes called prenexing rules, since they give us
a means for putting any sentence into prenex normal form.
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A. Provide a proof of each claim.

1. Pa ∨Qb,Qb → b = c,¬Pa ` Qc

1 Pa ∨Qb

2 Qb → b = c

3 ¬Pa

4 Qb DS 1, 3

5 b = c →E 2, 4

6 Qc =E 5, 4

2. m = n ∨ n = o,An ` Am ∨Ao

1 m = n ∨ n = o

2 An

3 m = n

4 Am =E 3, 2

5 Am ∨Ao ∨I 4

6 n = o

7 Ao =E 6, 7

8 Am ∨Ao ∨I 7

9 Am ∨Ao ∨E 1, 3–5, 6–8

3. ∀x x = m,Rma ` ∃xRxx

1 ∀x x = m

2 Rma

3 a = m ∀E 1

4 Raa =E 3, 2

5 ∃xRxx ∃I 4
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4. ∀x∀y(Rxy → x = y) ` Rab → Rba

1 ∀x∀y(Rxy → x = y)

2 Rab

3 ∀y(Ray → a = y) ∀E 1

4 Rab → a = b ∀E 3

5 a = b →E 4, 2

6 Raa =E 5, 2

7 Rba =E 5, 6

8 Rab → Rba →I 2–7

5. ¬∃x¬x = m ` ∀x∀y(Px → Py)

1 ¬∃x¬x = m

2 ∀x¬¬x = m CQ 1

3 ¬¬a = m ∀E 2

4 a = m DNE 3

5 ¬¬b = m ∀E 2

6 b = m DNE 5

7 Pa

8 Pm =E 3, 7

9 Pb =E 5, 8

10 Pa → Pb →I 7–9

11 ∀y(Pa → Py) ∀I 10

12 ∀x∀y(Px → Py) ∀I 11

6. ∃xJx, ∃x¬Jx ` ∃x∃y ¬x = y

1 ∃xJx

2 ∃x¬Jx

3 Ja

4 ¬Jb

5 a = b

6 Jb =E 5, 3

7 ⊥ ⊥I 6, 4

8 ¬a = b ¬I 5–7

9 ∃y¬a = y ∃I 8

10 ∃x∃y¬x = y ∃I 9

11 ∃x∃y¬x = y ∃E 2, 4–10

12 ∃x∃y¬x = y ∃E 1, 3–11
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7. ∀x(x = n ↔ Mx),∀x(Ox ∨ ¬Mx) ` On

1 ∀x(x = n ↔ Mx)

2 ∀x(Ox ∨ ¬Mx)

3 n = n ↔ Mn ∀E 1

4 n = n =I

5 Mn ↔E 3, 4

6 On ∨ ¬Mn ∀E 2

7 ¬On

8 ¬Mn DS 6, 7

9 ⊥ ⊥I 5, 8

10 ¬¬On ¬I 7–9

11 On DNE 10

8. ∃xDx,∀x(x = p ↔ Dx) ` Dp

1 ∃xDx

2 ∀x(x = p ↔ Dx)

3 Dc

4 c = p ↔ Dc ∀E 2

5 c = p ↔E 4, 3

6 Dp =E 5, 3

7 Dp ∃E 1, 3–6

9. ∃x
[
(Kx ∧ ∀y(Ky → x = y)) ∧Bx

]
,Kd ` Bd

1 ∃x
[
(Kx ∧ ∀y(Ky → x = y) ∧Bx

]
2 Kd

3 (Ka ∧ ∀y(Ky → a = y)) ∧Ba

4 Ka ∧ ∀y(Ky → a = y) ∧E 3

5 Ka ∧E 4

6 ∀y(Ky → a = y) ∧E 4

7 Kd → a = d ∀E 6

8 a = d →E 7, 2

9 Ba ∧E 3

10 Bd =E 8, 9

11 Bd ∃E 1, 3–10
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10. ` Pa → ∀x(Px ∨ ¬x = a)

1 Pa

2 b = a

3 Pb =E 2, 1

4 Pb ∨ ¬b = a ∨I 3

5 ¬b = a

6 Pb ∨ ¬b = a ∨I 5

7 Pb ∨ ¬b = a TND 2–4, 5–6

8 ∀x(Px ∨ ¬x = a) ∀I 7

9 Pa → ∀x(Px ∨ ¬x = a) →I 1–8

B. Identity is an equivalence relation, which means that it is reflexive,
symmetric, and transitive:

reflexivity: ∀x x = x
1 a = a =I

2 ∀x x = x ∀I 1

symmetry: ∀x∀y(x = y → y = x)

1 a = b

2 b = b =I

3 b = a =E 1, 2

4 a = b → b = a →I 1–3

5 ∀y(a = y → y = a) ∀I 4

6 ∀x∀y(x = y → y = x) ∀I 5

transitivity: ∀x∀y∀z((x = y ∧ y = z) → x = z)

1 a = b ∧ b = c

2 a = b ∧E 1

3 b = c ∧E 2

4 a = c =E 2, 3

5 (a = b ∧ b = c) → a = c →I 1–4

6 ∀z((a = b ∧ b = z) → a = z) ∀I 5

7 ∀y∀z((a = y ∧ y = z) → a = z) ∀I 6

8 ∀x∀y∀z((x = y ∧ y = z) → x = z) ∀I 7

Show that the reflexivity, symmetry and transitivity of identity are all theorems
of FOL.
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C. Show that the following are provably equivalent:

� ∃x
(
[Fx ∧ ∀y(Fy → x = y)] ∧ x = n

)
� Fn ∧ ∀y(Fy → n = y)

And hence that both have a decent claim to symbolise the English sentence
‘Nick is the F’.
In one direction:
1 ∃x

(
[Fx ∧ ∀y(Fy → x = y)] ∧ x = n

)
2 [Fa ∧ ∀y(Fy → a = y)] ∧ a = n

3 a = n ∧E 2

4 Fa ∧ ∀y(Fy → a = y) ∧E 2

5 Fa ∧E 4

6 Fn =E 3, 5

7 ∀y(Fy → a = y) ∧E 4

8 ∀y(Fy → n = y) =E 3, 7

9 Fn ∧ ∀y(Fy → n = y) ∧I 6, 8

10 Fn ∧ ∀y(Fy → n = y) ∃E 1, 2–9

And now in the other:
1 Fn ∧ ∀y(Fy → n = y)

2 n = n =I

3 [Fn ∧ ∀y(Fy → n = y)] ∧ n = n ∧I 1, 2

4 ∃x
(
[Fx ∧ ∀y(Fy → x = y)] ∧ x = n

)
∃I 3

D. In §22, we said that the following are logically equivalent symbolisations of
the English sentence ‘there is exactly one F’:

� ∃xFx ∧ ∀x∀y
[
(Fx ∧ Fy) → x = y

]
� ∃x

[
Fx ∧ ∀y(Fy → x = y)

]
� ∃x∀y(Fy ↔ x = y)

Show that they are all provably equivalent. (Hint : to show that three claims
are provably equivalent, it suffices to show that the first proves the second, the
second proves the third and the third proves the first; think about why.)
It suffices to show that the first proves the second, the second proves the third
and the third proves the first, for we can then show that any of them prove any
others, just by chaining the proofs together (numbering lines, where necessary.
Armed with this, we start on the first proof:
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1 ∃xFx ∧ ∀x∀y
[
(Fx ∧ Fy) → x = y

]
2 ∃xFx ∧E 1

3 ∀x∀y
[
(Fx ∧ Fy) → x = y

]
∧E 1

4 Fa

5 ∀y
[
(Fa ∧ Fy) → a = y

]
∀E 3

6 (Fa ∧ Fb) → a = b ∀E 5

7 Fb

8 Fa ∧ Fb ∧I 4, 7

9 a = b →E 6, 8

10 Fb → a = b →I 7–9

11 ∀y(Fy → a = y) ∀I 10

12 Fa ∧ ∀y(Fy → a = y)) ∧I 4, 11

13 ∃x
[
Fx ∧ ∀y(Fy → x = y)

]
∃I 12

14 ∃x
[
Fx ∧ ∀y(Fy → x = y)

]
∃E 2, 4–13

Now for the second proof:

1 ∃x
[
Fx ∧ ∀y(Fy → x = y)

]
2 Fa ∧ ∀y(Fy → a = y)

3 Fa ∧E 2

4 ∀y(Fy → a = y) ∧E 2

5 Fb

6 Fb → a = b ∀E 4

7 a = b →E 6, 5

8 a = b

9 Fb =E 8, 3

10 Fb ↔ a = b ↔I 5–7, 8–9

11 ∀y(Fy ↔ a = y) ∀I 10

12 ∃x∀y(Fy ↔ x = y) ∃I 11

13 ∃x∀y(Fy ↔ x = y) ∃E 1, 2–12
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And finally, the third proof:

1 ∃x∀y(Fy ↔ x = y)

2 ∀y(Fy ↔ a = y)

3 Fa ↔ a = a ∀E 2

4 a = a =I

5 Fa ↔E 3, 4

6 ∃xFx ∃I 5

7 Fb ∧ Fc

8 Fb ∧E 7

9 Fb ↔ a = b ∀E 2

10 a = b ↔E 9, 8

11 Fc ∧E 7

12 Fc ↔ a = c ∀E 2

13 a = c ↔E 12, 11

14 b = c =E 10, 13

15 (Fb ∧ Fc) → b = c →I 8–14

16 ∀y
[
(Fb ∧ Fy) → b = y

]
∀I 15

17 ∀x∀y
[
(Fx ∧ Fy) → x = y

]
∀I 16

18 ∃xFx ∧ ∀x∀y
[
(Fx ∧ Fy) → x = y

]
∧I 6, 17

19 ∃xFx ∧ ∀x∀y
[
(Fx ∧ Fy) → x = y

]
∃E 1, 2–18

E. Symbolise the following argument

There is exactly one F. There is exactly one G. Nothing is both F
and G. So: there are exactly two things that are either F or G.

And offer a proof of it.
Here’s the symbolisation, the proof will come over the page:
∃x

[
Fx ∧ ∀y(Fy → x = y)

]
,

∃x
[
Gx ∧ ∀y(Gy → x = y)

]
,

∀x(¬Fx ∨ ¬Gx) .˙.
∃x∃y

[
¬x = y ∧ ∀z((Fz ∨Gz) → (x = z ∨ y = z))

]
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1 ∃x
[
Fx ∧ ∀y(Fy → x = y)

]
2 ∃x

[
Gx ∧ ∀y(Gy → x = y)

]
3 ∀x(¬Fx ∨ ¬Gx)

4 Fa ∧ ∀y(Fy → a = y)

5 Fa ∧E 4

6 ∀y(Fy → a = y) ∧E 4

7 ¬Fa ∨ ¬Ga ∀E 3

8 ¬Ga DS 7, 5

9 Gb ∧ ∀y(Gy → b = y)

10 Gb ∧E 9

11 ∀y(Gy → b = y) ∧E 9

12 a = b

13 Ga =E 12, 10

14 ⊥ ⊥I 13, 8

15 ¬a = b ¬I 12–14

16 Fc ∨Gc

17 Fc

18 Fc → a = c ∀E 6

19 a = c →E 18, 17

20 a = c ∨ b = c ∨I 19

21 Gc

22 Gc → b = c ∀E 11

23 b = c →E 22, 21

24 a = c ∨ b = c ∨I 23

25 a = c ∨ b = c ∨E 16, 17–20, 21–24

26 (Fc ∨Gc) → (a = c ∨ b = c) →I 16–25

27 ∀z((Fz ∨Gz) → (a = z ∨ b = z)) ∀I 26

28 ¬a = b ∧ ∀z((Fz ∨Gz) → (a = z ∨ b = z)) ∧I 15, 27

29 ∃y
[
¬a = y ∧ ∀z((Fz ∨Gz) → (a = z ∨ y = z))

]
∃I 28

30 ∃x∃y
[
¬x = y ∧ ∀z((Fz ∨Gz) → (x = z ∨ y = z))

]
∃I 29

31 ∃x∃y
[
¬x = y ∧ ∀z((Fz ∨Gz) → (x = z ∨ y = z))

]
∃E 2, 9–30

32 ∃x∃y
[
¬x = y ∧ ∀z((Fz ∨Gz) → (x = z ∨ y = z))

]
∃E 1, 4–31
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