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Kurt Gödel

• Gödel is one of the most important
intellectual figures of the 20th Century

• His Incompleteness Theorems were
monumental achievements in
mathematical logic

• They had important technical
consequences for subjects like
computer theory

• But they also have huge consequences
for the philosophy of mathematics Kurt Gödel
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Some Properties of Theories
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Some Properties of Theories

What is a Theory?

• In formal logic, a theory is any deductively closed set of
sentences

• What does it mean to call a set of sentences “deductively
closed”?

– Imagine you have a set of sentences, Γ, and now consider all of
the sentences you can logically deduce from Γ

– Now imagine that you add all of those sentences into the set Γ

– Γ would then be deductively closed

• Formally: Γ is deductively closed ↔df for every sentence A ,
A ∈ Γ↔ Γ ` A
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Some Properties of Theories

An Example

• Imagine we start with the set of the following set of sentences{
‘Frege was a logicist’
‘Russell was a logicist’

}

• We can deduce lots of sentences from this set:

– Frege was a logicist ↔ Russell was a logicist

– ∃x(x was a logicist)

– . . .

• We can make a theory by deductively closing this set

– The deductive closure of Γ =df {A : Γ ` A}

• We call the sentences in a theory the theorems of that theory
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Some Properties of Theories

Property One: ω-Consistency
• One of the most important properties a theory can have is

consistency

– Γ is consistent ↔df there is no sentence A such that Γ ` A
and Γ ` ¬A

• But when dealing with arithmetical theories, we would also
probably demand ω-consistency

– Γ is ω-consistent ↔df if Γ ` ¬A(n) for each numeral n, then
Γ 6` ∃xA(x)

• Every ω-consistent theory of arithmetic is consistent, but not
vice versa

• However, any true theory of arithmetic should be
ω-consistent!
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Some Properties of Theories

Property Two: Negation-Completeness

• Another good property for a theory is
negation-completeness

– Γ is negation-complete ↔df for every sentence, A , in the
language of Γ, either Γ ` A or Γ ` ¬A

• If a theory is negation complete, then it decides every
sentence in the language of the theory:

– it either proves that sentence (Γ ` A)

– or it refutes that sentence (Γ ` ¬A)

• A negation-complete theory leaves nothing out
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Some Properties of Theories

Axiomatisation
• Theories are infinite sets

– Theories are deductively closed, and a set of sentences always
has infinitely many deductive implications

• How could a finite mind possibly comprehend these
infinitely complex theories!?

• By their axiomatisations!

– Θ is an axiom-set for Γ ↔df Γ = the deductive closure of Θ

– A is an axiom of Γ relative to axiomatisation Θ ↔df Θ is an
axiom-set for Γ and A ∈ Θ

• A finite mind could obviously comprehend infinite Γ if it could
be axiomatised by some finite Θ, but that is not the only
way. . .
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Some Properties of Theories

Peano Arithmetic
• Peano Arithmetic is the deductive closure of the following

axioms:

(1) ∀x(0 6= Sx)
(2) ∀x∀y(Sx = Sy → x = y)

(3) ∀x(x + 0 = x)
(4) ∀x∀y(x + Sy = S(x + y))

(5) ∀x(x × 0 = 0)
(6) ∀x∀y(x × Sy = (x × y) + x)

(7)
(
A(0) ∧ ∀x(A(x)→ A(Sx))

)
→ ∀xA(x)

• Axiom (7) is really an axiom scheme — every instance
counts as an axiom

• So Peano Arithmetic has infinitely many axioms
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Some Properties of Theories

Property Three: Recursively Axiomatisable
• Γ recursively axiomatisable just in case there is a recursive

function f s.t. f (A) = 1 if A ∈ Γ and f (A) = 0 if A /∈ Γ

– That’s a slight simplification: we would usually think of f as a
function which maps a sentence’s Gödel number to 0 or 1

• Recursive functions are functions which can be computed by
(idealised) computers

– Last week we defined primitive recursive functions

– All primitive recursive functions are recursive functions, plus
functions which search for the least number which meets a
certain condition

• Plausible thought: A theory can be grasped by a finite mind
only if it is recursively axiomatisable
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Some Properties of Theories

Property Four: Including Robinson Arithmetic

• Robinson Arithmetic is the deductive closure of the
following axioms:

(1) ∀x(0 6= Sx)
(2) ∀x∀y(Sx = Sy → x = y)
(3) ∀x(x 6= 0→ ∃y(x = Sy))

(4) ∀x(x + 0 = x)
(5) ∀x∀y(x + Sy = S(x + y))

(6) ∀x(x × 0 = 0)
(7) ∀x∀y(x × Sy = (x × y) + x)

• Roughly: Robinson Arithmetic = Peano Arithmetic −
Induction
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The First Incompleteness Theorem

All Four Properties Together?

• We’ve listed four good properties that a theory can have:

(i) ω-consistent

(ii) Recursively axiomatisable

(iii) Includes Robinson Arithmetic

(iv) Negation-complete

• It is natural to wonder whether a theory could have all four of
these properties

• In particular, we would surely want our theory of arithmetic to
have them all!
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The First Incompleteness Theorem

Gödel’s First Incompleteness Theorem

• There is no theory Γ which has all four of the following
properties:

(i) ω-consistent

(ii) Recursively axiomatisable

(iii) Includes Robinson Arithmetic

(iv) Negation-complete
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The First Incompleteness Theorem

Rosser’s Strengthening

• There is no theory Γ which has all four of the following
properties:

(i) Consistent

(ii) Recursively axiomatisable

(iii) Includes Robinson Arithmetic

(iv) Negation-complete
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The First Incompleteness Theorem

Gödel Numbering

• Gödel started by introducing a code to let us represent
symbols and strings of symbols with numbers

• The number that represents a string of symbols a1 . . . an is
called its Gödel number, and is written pa1 . . . anq

– First assign each primitive symbol a number

– pa1 . . . anq =df π
g(a1)
1 × . . .× πg(an)

n

(πi is the ith prime number, and g(a) is the number we
assigned to primitive symbol a)

• The Fundamental Theorem of Arithmetic — that every
number has a unique prime factorisation — guarantees we can
decode a string of symbols from its Gödel number
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The First Incompleteness Theorem

Proof in Γ

• We can also introduce Gödel numbers for superstrings — i.e.
strings of strings of symbols

– Let s1, . . . , sn be a superstring of symbols

– We can code this superstring as πps1q
1 × . . .× πpsnq

n

• A sequence of sentences is a superstring of symbols

• Gödel demonstrated that, if Γ is recursively axiomatisable and
includes Robinson Arithmetic, then Γ can define its own proof
relation, ProvΓ(m, n)

– Γ ` ProvΓ(m, n) iff m is the Gödel number of a sequence of
sentences, A1, . . . ,An, and n is the Gödel number of a
sentence, C , s.t. A1, . . . ,An constitutes a proof of C in Γ
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The First Incompleteness Theorem

The Diagonalisation Lemma

• Let Γ be recursively axiomatisable and include Robinson
Arithmetic

• In the language of Γ, for each open formula with one free
variable, A(x ), there is a sentence D s.t.:

– Γ ` A(pDq)↔ D

• Informally and roughly: D says of itself that it satisfies A
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The First Incompleteness Theorem

A Gödel Sentence for Γ

• Let Γ be recursively axiomatisable and include Robinson
Arithmetic

• In the language of Γ, there is a sentence G s.t.:

– Γ ` ¬∃xProvΓ(x , pGq)↔ G

• Informally and roughly: G says of itself that it is not
provable in Γ
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The First Incompleteness Theorem

Γ 6` G

• Gödel proved that if Γ is consistent, then Γ 6` G

• Here is a rough and informal argument

– Suppose Γ ` G

– In that case, some sequence of sentences is a derivation of G
from Γ; let n be the Gödel number of such a sequence

– It follows that Γ ` ProvΓ(n, pGq)

– Therefore, Γ ` ∃xProvΓ(x , pGq)

– But we already know that Γ ` ¬∃xProvΓ(x , pGq)↔ G

– So, since Γ ` G , modus ponens yields Γ ` ¬∃xProvΓ(x , pGq)

– So Γ is inconsistent
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The First Incompleteness Theorem

Γ 6` ¬G

• Gödel also proved that if Γ is ω-consistent, then Γ 6` ¬G

• Here is a rough and informal argument

– Suppose Γ ` ¬G
– We already know that Γ ` ¬∃xProvΓ(x , pGq)↔ G

– So by modus tollens, Γ ` ∃xProvΓ(x , pGq)

– Now suppose that Γ ` ProvΓ(n, pGq), where n is any
numeral you like

– In that case, Γ ` G

– It would follow that Γ ` G ∧ ¬G
– So for each n, Γ ` ¬ProvΓ(n, pGq)

– So Γ is not ω-consistent
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The First Incompleteness Theorem

Gödel’s First Incompleteness Theorem (Again)

• The upshot is that if Γ has these three properties:

(i) ω-consistent

(ii) Recursively axiomatisable

(iii) Includes Robinson Arithmetic

then Γ cannot be

(iv) Negation-complete

• If Γ has (i)–(iii), then Gödel can construct his G , such that:

– Γ 6` G

– Γ 6` ¬G
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The First Incompleteness Theorem

Extending Γ?
• What happens if we extend our theory Γ by adding G to it?

• Clearly, Γ ∪ {G} ` G

• But now we’ll be able to make a new sentence, G ′, s.t.:

– Γ ∪ {G} ` ¬∃xProvΓ∪{G}(x , pG ′q)↔ G ′

– Informally and roughly: G ′ says of itself that it is not
provable in Γ ∪ {G}

• And then we’ll prove:

– Γ ∪ {G} 6` G ′

– Γ ∪ {G} 6` ¬G ′

• So Γ ∪ {G} won’t be negation-complete either!
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The First Incompleteness Theorem

Extending Γ?
• What happens if we extend our theory Γ by adding ¬G to it?

• Clearly, Γ ∪ {¬G} ` ¬G

• But now we’ll be able to make a new sentence, G ′′, s.t.:

– Γ ∪ {¬G} ` ¬∃xProvΓ∪{¬G}(x , pG ′′q)↔ G ′′

– Informally and roughly: G ′′ says of itself that it is not
provable in Γ ∪ {¬G}

• And then we’ll prove:

– Γ ∪ {¬G} 6` G ′′

– Γ ∪ {¬G} 6` ¬G ′′

• So Γ ∪ {¬G} won’t be negation-complete either!
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The Second Incompleteness Theorem

Gödel’s Second Incompleteness Theorem

• Abbreviate ¬∃xProvΓ(x , p0 = 1q) as ConΓ

• If Γ has these three properties:

(i) Consistent

(ii) Recursively axiomatisable

(iii) Includes Robinson Arithmetic

then Γ cannot prove that Γ is consistent:

Γ 6` ConΓ
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The Second Incompleteness Theorem

How Did Gödel Do It!?
• If Γ is consistent, recursively axiomatisable, and includes

Robinson Arithmetic, then Γ itself contains all of the
resources needed to prove Gödel’s First Incompleteness
Theorem:

– Γ ` ConΓ → ¬∃xProvΓ(x , pGq)

• And since G is defined so that Γ ` ¬∃xProvΓ(x , pGq)↔ G , it
follows that:

– Γ ` ConΓ → G

• Now suppose that Γ ` ConΓ; it would follow by modus ponens
that Γ ` G , violating the First Incompleteness Theorem

• So Γ 6` ConΓ
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The Second Incompleteness Theorem

Gödel’s Second Incompleteness Theorem (Again)
• Here is a concise statement on the Second Incompleteness

Theorem:

– If Γ is consistent, recursively axiomatisable, and includes
Robinson Arithmetic, then it cannot prove its own
consistency

• Or to put it in a slightly more paradoxical way:

– If a recursively axiomatisable theory which includes Robinson
Arithmetic proves its own consistency, then that theory is
inconsistent!

• Compare that to this good advice for life:

– If someone tells you that they are trustworthy, then they are
not trustworthy!

28 / 44



The Foundations of Mathematics (5): Gödel’s Incompleteness Theorems
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A Philosophical Consequence of Gödel’s Theorems

The Philosophical Significance of Gödel’s Theorems

• It is hard to over-estimate the philosophical significance of
Gödel’s theorems

• They have huge consequences for pretty much every
philosophy of maths

• We will quickly look at the absolutely devastating
consequences that they had for Hilbert’s Programme
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A Philosophical Consequence of Gödel’s Theorems

Hilbert’s Programme

• Hilbert divided mathematics into two
parts: Finitary Mathematics (FM)
and Ideal Mathematics (IM)

• FM is meaningful, but IM is just a
game

• Hilbert’s Programme was to give a
finitary proof that FM + IM is
consistent

David Hilbert
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A Philosophical Consequence of Gödel’s Theorems

The Failure of Hilbert’s Programme

• IM must be recursively axiomatisable, and it must include
Robinson Arithmetic

• So, if we assume that IM is consistent, the Second
Incompleteness Theorem implies:

– IM 6` ConIM

• FM is a finitary fragment of IM

• So, if FM proved that FM + IM is consistent, IM would prove
that IM is consistent

• Therefore, by modus tollens , FM does not prove that
FM + IM is consistent
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A Philosophical Consequence of Gödel’s Theorems

Can Hilbert’s Programme be Saved?

• Abandon proof?

– Maybe we don’t need to prove that IM + FM is consistent?

– Maybe it’s just enough if IM + FM is in fact consistent?

• Re-conceive consistency?

– Maybe ConIM isn’t the best way to formalize the claim that IM
is consistent?

• Abandon recursive axiomatisability?

– Maybe FM isn’t recursively axiomatisable?

– Then FM could prove the consistency of IM + FM without
violating the Second Incompleteness Theorem
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Taking Care: Syntax vs. Semantics

Syntax vs. Semantics

• Syntax

– When we think about a language syntactically, we are thinking
of that language as a mere system of signs

– We do not care what the signs mean, or whether they mean
anything at all

• Semantics

– When we think about a language semantically, we are thinking
about the language as a system of symbols with meanings

– For logical purposes, we are interested in things like:
truth-values, references, satisfaction conditions
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Taking Care: Syntax vs. Semantics

Two Notions of Entailment

• Syntactic Deduction

– We can write out a proof using sentences in Γ as premises, and
ending with A

– Γ ` A
– Strictly speaking we should specify which deductive system

we are using: Γ `∆ A

• Semantic Consequence

– Any interpretation which makes all of the sentences in Γ true
makes A true too

– Γ � A
– Strictly speaking we should specify which semantics we are

using: Γ �Σ A
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Taking Care: Syntax vs. Semantics

Soundness and Completeness

• Deductive system ∆ is sound relative to semantics Σ iff:

if Γ `∆ A then Γ �Σ A

• Deductive system ∆ is complete relative to semantics Σ iff:

if Γ �Σ A then Γ `∆ A

• In the dream scenario, our deductive system is sound and
complete relative to our semantics

• Classical First-Order Logic is sound and complete relative to
the standard semantics
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Taking Care: Syntax vs. Semantics

Gödel’s Theorems are Primarily Syntactic

• Gödel’s Incompleteness Theorems are primarily syntactic

(1) If Γ is ω-consistent, recursively axiomatisable and includes
Robinson Arithmetic, then there is a sentence G such that:
Γ 6` G and Γ 6` ¬G

(2) If Γ is consistent, recursively axiomatisable and includes
Robinson Arithmetic, then Γ 6` ConΓ

• IMPORTANT: These theorems aren’t limited to just one
deductive system

• They apply to theory Γ, if its background deductive system
includes at least classical FOL, and so long as Γ is consistent,
recursively axiomatisable and includes Robinson Arithmetic
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Taking Care: Syntax vs. Semantics

Gödel’s Theorems can become Semantic

• However, if we assume that we are working with a complete
deductive system, we can convert these syntactic results into
semantic ones:

(1) If Γ is consistent, effectively axiomatisable and includes
Robinson Arithmetic, then there is a sentence G such that:
Γ 6� G and Γ 6� ¬G

(2) If Γ is consistent, effectively axiomatisable and includes
Robinson Arithmetic, then Γ 6� ConΓ
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Taking Care: Syntax vs. Semantics

Non-Standard Arithmetic
• First-Order Peano Arithmetic (PA1)

(1) ∀x(0 6= Sx)
(2) ∀x∀y(Sx = Sy → x = y)

(3) ∀x(x + 0 = x)
(4) ∀x∀y(x + Sy = S(x + y))

(5) ∀x(x × 0 = 0)
(6) ∀x∀y(x × Sy = (x × y) + x)

(7)
(
A(0) ∧ ∀x(A(x)→ A(Sx))

)
→ ∀xA(x)

• By the Second Incompleteness Theorem: PA1 6` ConPA1

• Since FOL is complete: PA1 6� ConPA1

– Some non-standard interpretation makes all of the sentences in
PA1 ∪ {¬ConPA1} true!
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Taking Care: Syntax vs. Semantics

Second-Order Logic

• IMPORTANT: Some deductive systems are incomplete
relative to their semantics

• A few times we have come up against the difference between
First-Order Logic and Second-Order Logic

• FOL lets us use quantifiers like this: ∃x x is a philosopher

– The variable x is in the position of a name, like ‘Socrates’ or
‘Plato’

• SOL also lets us use quantifiers like this: ∃X X (Socrates)

– The variable X is in the position of a predicate, like ‘is a
philosopher’ or ‘is wise’
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Taking Care: Syntax vs. Semantics

Second-Order Logic

• According to the standard semantics for SOL, every subset
of the first-order domain determines a value of the
second-order domain

• No recursively axiomatisable deductive system can be sound
and complete relative to this standard semantics; the standard
deductive system is sound but not complete

– For every sentence A and set of sentences Γ: if Γ ` A then
Γ � A

– There is some sentence A and some set of sentences Γ such
that: Γ � A and Γ 6` A

• As a result, when we are dealing with a second-order system,
we cannot convert Gödel’s syntactic results into semantic ones
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Taking Care: Syntax vs. Semantics

Categorical Arithmetic
• Second-Order Peano Arithmetic (PA2)

(1) ∀x(0 6= Sx)
(2) ∀x∀y(Sx = Sy → x = y)

(3) ∀x(x + 0 = x)
(4) ∀x∀y(x + Sy = S(x + y))

(5) ∀x(x × 0 = 0)
(6) ∀x∀y(x × Sy = (x × y) + x)

(7) ∀Y
((
Y (0) ∧ ∀x(Y (x)→ Y (Sx))

)
→ ∀xY (x)

)
• On the standard semantics PA2 is categorical, meaning all of

its models are isomorphic

• It follows that PA2 is semantically complete

– Either PA2 � A , or PA2 � ¬A

• PA2 6` ConPA2 but PA2 � ConPA2 43 / 44
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Taking Care: Syntax vs. Semantics

For the Seminar

• In the seminar we are going to look at Gödel’s own platonist
philosophy of mathematics

• Required reading:

– Gödel, ‘What is Cantor’s Continuum Problem?’, in B&P

• It may also be helpful to look at the following secondary
material on Gödel’s Theorems:

– Giaquinto, The Search for Certainty, Part V
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