
1

Against Cumulative Type Theory
Tim Button and Robert Trueman
tim.button@ucl.ac.uk and rob.trueman@york.ac.uk

This is a pre-print; the paper is forthcoming at Review of Symbolic Logic.

Abstract. Standard Type Theory, STT, tells us that 1=(0<) is well-formed iff = = < + 1.
However, Linnebo and Rayo (2012) have advocated for the use of Cumulative Type Theory,
CTT, which has more relaxed type-restrictions: according to CTT, 1�(0) is well-formed iff
� > . In this paper, we set ourselves against CTT. We begin our case by arguing against
Linnebo and Rayo’s claim that CTT sheds new philosophical light on set theory. We then
argue that, while CTT’s type-restrictions are unjustifiable, the type-restrictions imposed by
STT are justified by a Fregean semantics. What is more, this Fregean semantics provides us
with a principled way to resist Linnebo and Rayo’s Semantic Argument for CTT. We end
by examining an alternative approach to cumulative types due to Florio and Jones (2021);
we argue that their theory is best seen as a misleadingly formulated version of STT.

Standard Type Theory, STT, tells us that 1=(0<) is well-formed iff = = < + 1.
However, Linnebo and Rayo (2012) have advocated for the use of Cumulative Type
Theory, CTT, which has more relaxed type-restrictions: according to CTT, 1�(0)
is well-formed iff � > . Other philosophers, including Williamson (2013: 237–8),
Krämer (2017: 527), and Florio and Jones (2021), have since expressed sympathy for
cumulative types.

We set ourselves against cumulative type theory. We begin our case by argu-
ing against Linnebo and Rayo’s claim that CTT sheds new philosophical light on
set theory: in §2 we highlight some important mathematical differences between
CTT and set theory, and in §3 we explore the philosophical consequences of these
differences. Then, in §4, we push our case against CTT further, by arguing that the
type-restrictions it imposes are unjustifiable. This marks an important difference
between CTT and STT: a Fregean semantics justifies STT’s type-restrictions (see §5),
and this Fregean semantics also provides us with a principled way to resist Linnebo
and Rayo’s Semantic Argument for CTT (see §6). We end, in §7, by examining an
alternative approach to cumulative types due to Florio and Jones (2021); we argue
that their theory is best seen as a misleadingly formulated version of STT.

1 Formal type theories
We start by outlining the formalisms of STT and CTT. For simplicity of exposition,
in this paper we focus onmonadic type theories. (We also only consider un-ramified
type theories.)

2

1.1 STT

STT has a countable infinity of types, 0 ≤ = < $. The type of a term is indicated
with a numerical superscript: 0= is a type = term. We have constants and variables
of every type. Atomic formulas are made by combining a type =+1 term with a
type = term: 1=(0<) is well-formed iff = = < + 1. Intuitively, 1=+1(0=) applies a type
=+1 entity to a type = entity, where an entity is of type = iff it is a value of a type =
variable; however, exactly what this intuitive gloss amounts to will depend on your
preferred interpretation of the types (see §§4–5).

Every type of variable can be bound by quantifiers. We here present the rules
for ∀; the rules for ∃ are the obvious duals. For all types =, the following inferences
are licensed, provided that (i) all expressions are well-formed, and (ii) 1= does not
occur in any undischarged assumptions on which)(1=) depends:

∀G=)(G=)
∀E=

)(0=)
)(1=)

∀I=∀G=)(G=)

To ensure that each level of the type hierarchy is well-populated, we have the
following scheme, for each type =:

STT-Comprehension. ∃I=+1∀G=(I=+1(G=) ↔)(G=)), whenever)(G=) is well-formed
and does not contain I=+1.

STT has the usual stock of logical devices: quantifiers, connectives, and the identity
sign, =. The identity sign can be flanked by a pair of terms of any type, but they
must be terms of the same type; so 0< = 1= is well-formed iff < = =. Identity is
governed by the following scheme, for each type =:

G= = H= iff ∀I=+1(I=+1(G=) ↔ I=+1(H=))

We can treat this as an axiom scheme or an explicit definition. But, either way,
G= = H= is typically ambiguous: there is not a single identity relation that applies
across all the types, but a different relation for each type.

1.2 CTT

Linnebo and Rayo (2012) ask us to consider an alternative, cumulative, type theory,
CTT. This type theory was formally developed by Degen and Johannsen (2000).
(We discuss a different approach to cumulation, due to Florio and Jones (2021),
in §7.) The basic thought behind CTT is that the entities cumulate as you ascend
through the types. Let us see how this is implemented.

First, CTT relaxes STT’s syntax. In STT, 1=(0<) is well-formed iff = = < + 1.
But, if the types cumulate, then everything at level 0 reappears at level 1; so, since
22(01) is meaningful, 22(00) should be too. More generally, CTT allows that 1�(0)
is well-formed iff � > . And note that we use ‘’ and ‘�’ rather than ‘=’ and ‘<’
here: if the types cumulate, we will want to be able to consider transfinite types,
and so we must allow ourselves a transfinite stock of type-indices. (One obvious

3

way to do this is to stipulate that the type-indices are von Neumann’s ordinals, but
the only important constraint is that the type-indices be well-ordered.)1

Second, CTT has rather permissive inference rules for quantifiers. (Again, we
only outline the rules for ∀.) For all types � ≥ , the following inferences are
licensed, provided that (i) all expressions are well-formed, and (ii) 1� does not
occur in any undischarged assumption on which)(1�) depends:2

∀G�)(G�)
∀E�)(0)

)(1�)
∀I�∀G)(G)

These rules are intuitively sound, given the idea of cumulation: every type entity
is a type � ≥ entity too; so if) holds of every type � entity, then) holds of each
type entity.

Third, to ensure that each successor-level of the type hierarchy iswell-populated,
CTT has a Comprehension scheme, for each type :3

CTT-Comprehension. ∃I+1∀G(I+1(G) ↔)(G)), whenever)(G) is well-formed
and does not contain I+1.

Fourth, CTT has an infinitary inference rule for each limit type �:4

∀G)(G), for all < �
Limit�∀G�)(G�)

Intuitively, this guarantees that nothing essentially ‘new’ happens at limit types, so
that any type � entity is an entity of some type < �.

So far, we have identified entities across types quite freely. However, Linnebo
and Rayo (2012: 281–3) retain the rule that a strict identity claim, G = H�, is well-
formed iff = �. To deal with cross-type identity, they explicitly define a new sign,
≡, for any types and � and where � = max(, �) + 1:5

0 ≡ 1� iffdf ∀G�(G�(0) ↔ G�(1�))

This definition is typically ambiguous: it defines different relations for different
and �. But all of these relations behave like identity: if)(0) and)(1�) are both
well-formed, then)(0) and 0 ≡ 1� together entail)(1�).6 Now we can prove the
following theorem scheme, for all ≤ �:7

1 Cf. Linnebo and Rayo (2012: 294, 2014: 178–9) on ‘definite’ collections of languages and al-
ternative ‘labels’. For readability, we use standard ordinal notation in this paper, but this is easily
eliminable; e.g. ‘ + 1’ can be parsed as ‘the next index after ’, and ‘$’ as ‘the first limit index’.

2 These are the obvious natural-deduction versions of Degen and Johannsen’s (2000: 149) sequent-
calculus rules. Linnebo and Rayo (2012: 288) are not specific on the rules they adopt, but (2012:
282n20) appeal to a result from Degen and Johannsen (2000: 150) which uses these rules.

3 Degen and Johannsen (2000: 149) and Linnebo and Rayo (2012: 288) offer a variant formulation,
using �-abstraction.

4 Degen and Johannsen (2000: 153) and Linnebo and Rayo (2012: 288).
5 Degen and Johannsen (2000: 149) draw no distinction between = and ≡.
6 For a proof, see Lemma 2 of §A.
7 Linnebo and Rayo (2012: 288) take Type-Raising as an axiom scheme; we prove it in Lemma 1 of

§A.

4

Type-Raising Scheme. ∀G∃H� G ≡ H�

So, if ≤ �, then every type entity is a type � entity, in the sense of ‘is’ expressed
by ≡.

We also provide another (typically ambiguous) explicit definition, where � =

max(, �) + 1:8

0 � 1� iffdf (∃G� ≡ 1�)G�(0)

This membership-like notion applies 1� to 0, but is well-formed for every and �.
So 0 � 1� allows us to simulate 1�(0), even when ≥ �.

If we provide no further axioms, though, then � can be ill-founded. To rule this
out, we lay down two final schemes, for all , �:9

Type-Founded. ∀0∀1�+1(0 � 1�+1 → ∃G� 0 ≡ G�)
Type-Base. ∀G0∀H H /� G0

This completes the list of axioms and inference rules for CTT.
It is worth making a brief observation about syntax. In moving from STT to

CTT, we are asked to relax STT’s syntax: 1�(0) is well-formed iff � > . There is an
obvious way to relax this further, whilst retaining a typed theory: allow that 1�(0)
is well-formed for any and �. However, this further relaxation would have no real
effect. As just noted, CTT can simulate 1�(0) using the formula 0 � 1�, where
the latter is defined using the more stringent type-restrictions. Consequently, we
can be largely indifferent on whether to use the stringent type-restrictions, so that
1�(0) is well-formed iff � > , or the more liberal type-restrictions, so that 1�(0) is
well-formed for any and �. In what follows, we will tend to adopt the stringent
type-restrictions, but we will revisit this in §4.

For each type-index �, the theory CTT� has a countable infinity of distinct
variables of every type < �, and no terms of any type ≥ �. We refer to the cumulative
type theories in general as ‘CTT’, using ‘CTT�’ with the superscript when it is
important to pay attention to the bound.

2 The Sets-from-Types Theorem
Degen and Johannsen (2000) and Linnebo and Rayo (2012) note that CTT interprets
an iterative set theory. In this section, we present a strengthened version of their for-
mal results. We discuss its philosophical significance in §3. For ease of exposition,
we will consider set theories without urelements (and similar type theories); we

8 Degen and Johannsen (2000: 151) and Linnebo and Rayo (2012: 282). Notation: (∃G� ≡ 1�))
abbreviates ∃G�(G� ≡ 1� ∧)); similarly, (∀G� ≡ 1�)) abbreviates ∀G�(G� ≡ 1� →)); and similarly
for other two-place infix predicates.

9 In §A, we prove that Type-Founded and Type-Base are independent from the axioms given so far.
Linnebo and Rayo (2012: 289) provide a version of Type-Base, but no version of Type-Founded (though
they clearly want some such principle; see Linnebo and Rayo 2012: 283n.22). Degen and Johannsen
(2000) tackle this slightly differently; see the start of §B, below. With these principles, we can establish
that: if < � then 0 � 1� iff 1�(0); if ≥ � and is minimal for 0 and � is minimal for 1� , then
0 /� 1� . (Here, we say that � is minimal for 2� iff ∀G� 2� . G� for all � < �.)

5

could accommodate urelements if we liked, but it would complicate our discussion
without adding any real insight.

2.1 The interpretation

We will focus on a ‘pure’ version of CTT�, which we call CTT�p. This augments
CTT� with principles guaranteeing that there is exactly one type 0 entity, and that
coextensive entities at higher-types are identical. (For details, see §B.2.) The set
theory that CTT�p can interpret is Zr, i.e. Zermelo set theory together with the
principle that the sets are arranged into well-ordered ranks. This theory omits
Replacement, and so is strictly weaker than ZF. (For more details, see §B; note that
ZF = Zr + Replacement.)

To interpret Zr with CTT�p, we first define a translation. For each Zr-formula),
let)(�) be the formula which results by replacing each ‘∈’ with ‘�’, each ‘=’ with ‘≡’,
and superscripting each variable with �. For example, the Axiom of Powersets(�) is:

∀0�∃1�∀G�(G� � 1� ↔ (∀E� � G�)E� � 0�)

Now we can prove the following result (see §B, Theorem 13):10

The Sets-from-Types Theorem. CTT�p ` Zr(�), for any limit � > $ with � + 2 < �.

Otherwise put: CTT�p proves the translations of all theorems of Zr.

2.2 Differences between Zr and Zr(�)

The proof of the Sets-from-Types Theorem involves establishing a tight association
between two notions: an entity’s type, as in CTT�p and Zr(�), and a set’s rank, as in
Zr. This sort of connection leads Linnebo and Rayo (2012: 289) to claim that ‘there
is no deep mathematical difference between the ideological hierarchy of type theory
and the ontological hierarchy of set theory.’

Whether to describe them as ‘deep’ may be a matter of taste, but it is worth
noting three mathematical differences between Zr, on the one hand, and CTT�p and
Zr(�), on the other.11 We summarize the differences in the following table:

Zr CTT�p and Zr(�)

(1) ranks defined internally types supplied externally
(2) untyped variables typed variables
(3) recursively axiomatized arithmetically complete

10 This extends Degen and Johannsen’s (2000: §4.1) results concerning Z. Linnebo and Rayo (2012:
289, n.28) cover only Z without Foundation. The bound � + 2 < � is needed as 0� � 1� abbreviates
∃G�+1(∀I�+2(I�+2(G�+1) ↔ I�+2(1�)) ∧ G�+1(0�)).

11 Linnebo and Rayo (2012: 284, 289) mention differences (1) and (2) themselves, but they do not
mention (3).

6

We will now explain these three differences.
Concerning (1). The notion of rank is explicitly defined within Zr itself, much

as it is within ZF.12 By contrast, the notion of type is metatheoretic for both CTT�p
and Zr(�). Every variable carries a type-index, and these type-indices are supplied
externally. Indeed, whenwe take the very first step of describing the syntax of CTT�,
we assume as given all the type-indices < �.

Concerning (2). Zr is essentially untyped. It has exactly one kind of variable,
which ranges over all sets of all ranks. By contrast, every variable in CTT�p and Zr(�)

carries a type-index, andCTT�p’s quantifier rules indicate that type variables range
only over entities of type ≤ . These theories have no untyped variables; that is, they
have no variables which range over all entities of all types. (Note that, despite our
use of the phrase ‘ranging over’, this difference shows up at the level of the formal
theories, prior to interpretation. Indeed, none of the differences depend upon any
semantic considerations.)

Concerning (3). Clearly, Zr is recursively axiomatized (see §B.1). However, nei-
ther CTT�p nor Zr(�) is recursively axiomatizable, thanks to the intrinsically infinitary
Limit-rules. Indeed, Limit$ makes these theories arithmetically complete, since it
simulates Hilbert’s $-rule.13

2.3 Mathematical foundations

We will now explain why these three differences are mathematically significant. In
brief: the differences show that Zr is expressively richer but deductively weaker
than Zr(�); this makes Zr much more suitable as a framework for considering math-
ematical foundations.

Differences (1)–(2) show that Zr is expressively richer than Zr(�). To see this,
consider how we might formulate questions about the height of a hierarchy. In the
case of Zr, we might ask a specific question like: Should we countenance a strongly
inaccessible rank? That question is formulated within the object language of Zr, and
this is possible because Zr’s untyped variables range over all the sets, whatever
their rank. So, whilst Zr does not settle whether there are any sets of strongly
inaccessible rank, it does allow us to formulate the claim that there are, and tells
us that any such sets obey Extensionality and Separation (for example). In the
case of CTTp, the analogous question about the height of a type-hierarchy would
be: Should we countenance a strongly inaccessible type-index? But this question is,
of course, formulated within a metalanguage. After all, each CTT�p has variables
of all and only the types < �, and Zr(�) has variables of all and only the types
≤ � + 2 < �,14 so neither theory allows us to formulate questions about entities of
type �; they literally lack the vocabulary for doing so.

12 Indeed, it is definable within LT; see §B.
13 Assuming � > $ and �+2 < �. Sketch. Using the Sets-from-Types Theorem, use CTT�p to develop

Zr($+$). In Zr($+$), define N as the set of finite von Neumann ordinals, and define + and × as usual.
Suppose we can show)(=) for each =; then since the type of each = is =, for each = < $ we can show
∀G=(G= � N→)(G=)); now use Limit$.

14 See footnote 10.

7

Difference (3), however, shows that Zr is deductively weaker than Zr(�). This is
obvious—one is arithmetically complete, the other is not—but let us draw out a
couple of consequences. The Sets-from-Types Theorem tells us that CTT�p interprets
Zr. However, this interpretation is not faithful, i.e. some non-theorems of Zr become
theoremsofZr(�) under interpretation; nor is the interpretationmutual, i.e. Zr cannot
interpret Zr(�).15

This combination of expressive richness with deductive weakness makes Zr
much more suitable as a framework for mathematical foundations than Zr(�) or
CTT�p.16 Concerning expressive strength: if our hierarchy is to serve as any kind of
mathematical foundation, then questions about the height of the hierarchy will be
of pressing importance; but only Zr provides a suitable framework for raising such
questions. Concerning deductive weakness: any adequate foundational theory
must be recursively axiomatizable since, as Gödel (1933: 45) put it, only recursively
axiomatizable theories can leave no doubt regarding whether a putative proof is a
proof, so that ‘the highest possible degree of exactness is obtained’; but only Zr is
recursively axiomatized.

2.4 Gödel on ‘superfluous restrictions’ in type theory

We just quoted Gödel on mathematical foundations. Having made the quoted
remarks, Gödel went on to make a more famous claim:

the system of axioms for the theory of aggregates, as presented by Zermelo, Fraenkel, and
vonNeumann. . . is nothing else but a natural generalization of the theory of types, or rather,
what becomes of the theory of types if certain superfluous restrictions are removed.17

He continued by outlining the ‘superfluous restrictions’ thus:18

(i) ‘0 ∈ 1’ is meaningful iff the type of ‘1’ is exactly one greater than that of ‘0’;
(ii) each class (of any type) can contain classes of exactly one type;
(iii) only finite types are allowed.

Whilst explicitly disavowing exegetical aims, Linnebo and Rayo (2012: 273–4, 278)
motivate CTT by suggesting that CTT arises from STT simply by lifting these ‘su-
perfluous restrictions’.

Certainly CTT lifts restrictions (i)–(iii). But Zr also lifts these restrictions, and
in a different way. Moreover, it is this latter way which we find in Gödel’s 1933
lecture. On each of points (1)–(3) from §2.2, Gödel sides against the use of anything
like Zr(�).

Concerning (1). Gödel (1933: 47) is clear that the theorywhich arises by removing
STT’s ‘superfluous restrictions’ will supply its own ‘types’.19

15 Illustration. Let ConZr be a suitable consistency sentence for Zr. This is independent from Zr, by
the second incompleteness theorem; but Zr(�) proves Con(�)Zr , since it is arithmetically complete. The
same example shows that Zr does not interpret Zr(�).

16 Pace Degen and Johannsen’s (2000) sentiment CTTp might serve ‘as a foundation for set theory’.
Note that differences (1)–(2) also underpin the philosophical discussion of §3.

17 Gödel (1933: 45–6).
18 Gödel (1933: 46–7); for discussion, see Feferman (1995b: 37) and Tait (2001: 88).
19 Tait (2001: 92) emphasises this point, and Linnebo and Rayo (2012: 289 n.28) concede it.

8

Concerning (2). Gödel (1933: 49) complains that, in STT, we have to formulate
‘the logical axioms for each type separately’, and he states that the theory which
removes STT’s ‘superfluous restrictions’ will avoid this complaint. Such a theory
will therefore employ an untyped variable, which can range over all entities.

Concerning (3). As already noted, Gödel (1933: 45, 48) insists that an adequate
formalization of the foundations ofmathematicsmust be recursively axiomatizable,
and explicitly remarks that such theories are necessarily arithmetically incomplete.

Gödel, then, seems never to have envisaged theories like Zr(�) or CTT�p.20 Rather,
Gödel’s suggestion was that removing STT’s ‘superfluous restrictions’ led to ZFU,
by the simple stipulation that the ‘type’ of G is iff G ∈ ++1 \ +, with these
segments of the set hierarchy defined directly within ZFU in the (now) familiar
fashion.21 That is, Gödel simply identified a set’s ‘type’ with (what we now call) its
rank, and advocated for the use of recursively axiomatized theories whose untyped
variables range over all the sets (of all ranks).

3 The (in)significance of the Sets-from-Types Theorem
We have noted the important mathematical differences between Zr and Zr(�). We
will now show how these differences undermine the philosophical significance of
the Sets-from-Types Theorem. In broad brush strokes: Linnebo and Rayo think that
the Sets-from-Types Theorem sheds important new light on set theory; we disagree,
since Zr(�) and Zr and importantly distinct.

3.1 Elsa’s worries

To reconstruct Linnebo and Rayo’s (2012: 289–94, 2014: 178) intended use of the
Sets-from-Types Theorem, we will introduce a character, Elsa. Elsa wants to use Zr
to talk about the hierarchy of sets, but she has some ontological worries. Following
post-Quineanorthodoxy, Elsadraws a sharpdistinctionbetweena theory’s ontology
and its ideology. In general, Elsa thinks that if a theory is coherent, then that is
enough to guarantee the good standing of its ideology: roughly, Elsa thinks that
a theory’s ideology merely provides you with a way of talking about objects, and
there is no standard beyond coherence bywhich to judgeways of talking. Now, Elsa
is certain that Zr is coherent, and so she has no reservations about its ideology. But,
Zr also postulates a rich ontology of sets, and Elsa insists that the mere coherence

20 Can we consider (or might Gödel have considered) the move from STT to Zr as involving two
steps: first, Linnebo and Rayo’s step from STT to some CTT� and Zr(�); second the addition of an
untyped variable to Zr(�), yielding Zr? (Thanks to an anonymous referee for posing this question.)
This may be a useful heuristic, but it is slightly technically infelicituous, since the result of adding an
untyped variable to Zr(�) will be arithmetically complete (cf. footnote 29).

21 Cf. Scott (1974: 208): ‘the best way to regard Zermelo’s theory is as a simplification and extension
of Russell’s [STT]. . . . The simplification was to make the types cumulative.’ Note that we are talking
about ZFU rather than ZrU. This is inevitable, since ZrU was not formulated until long after Gödel’s
lecture. However, Gödel supplied an additional argument in favour of Replacement; see footnote 24,
below.

9

of a theory is not enough to guarantee the existence of its ontological commitments.
So, Elsa worries: What guarantees that there are enough sets?

Linnebo and Rayo have a sequence of recommendations for Elsa. First, they will
introduce Elsa to the type hierarchy, in the form of CTT�p, whose coherence can be
assumed (at least, in this context). The question arises of how Elsa should think
about ontology/ideology in the type-theoretic context. Quantification over type 0
entities is just first-order quantification; so Elsa should think that theorizing at type
0 introduces ontological commitments. However, Elsa can perhaps be encouraged
to think that theorizing at higher types simply gives us sophisticated ways to talk
about the objects at type 0, and so only introduces ideological commitments. If Elsa
agrees to think in this way, then she will map her dichotomy between ontology
and ideology onto the dichotomy between type 0 and type > 0.22 Having done
this, she will regard CTT�p as ontologically unproblematic: it posits just one object
(i.e. one type 0 entity). Granted, she may regard CTT�p as ideologically profligate,
but she thinks that its coherence guarantees the good standing of its ideology.
Consequently, Elsa should have no worries about using CTT�p. Now, via the Set-
from-Types Theorem, Elsa can use CTT�p to obtain Zr(�). So, according to Linnebo
and Rayo, Elsa will have no reason to worry about using Zr(�) in place of Zr.

Having come this far, Linnebo and Rayo (2012: 290) hope that Elsamight now be
brought to share their view, that ‘the two hierarchies’—the ‘ideological’ hierarchy
of Zr(�) and the ‘ontological’ hierarchy of Zr—‘constitute different perspectives on
the same subject-matter.’ But we do not need to consider that further step. We think
that Elsa should balk at the line of reasoning given in the previous paragraph.

3.2 Ontology relocated

The immediate problem is that Zr and Zr(�) are importantly different theories. One
of the differences, mentioned in §2.3, is that Elsa can ask about the height of her
set-hierarchy within the object-language of Zr, whereas she can only ask about the
height of a type-hierarchy within a metalanguage. But, as we will now show, this
basic issue—of object language versus metalanguage—completely undermines the
dialectical force of Linnebo and Rayo’s line of reasoning.

Recall: Elsa wants to use Zr, but worries: What guarantees that enough sets ex-
ist? Linnebo and Rayo recommend that Elsa invoke the Sets-from-Types Theorem.
Specifically, they encourage Elsa to fix some limit � > $ with � + 2 < �, then work
in CTT�p to obtain Zr(�).

Inevitably, though, this discussion of � and � takes place within somemetatheory
which we use to describe CTT�p. After all, as noted in §§2.2–2.3, CTT�p’s types are

22 Linnebo and Rayo (2012: 270) claim that this is how the higher-types are widely regarded
by philosophers. For the record, we think that anyone who uses type theory (cumulative or non-
cumulative) should reject the idea that there is a useful ontology/ideology dichotomy to be drawn
along this faultline. When Quine (1951) drew his distinction between ontology and ideology, he drew
it for first-order logic. In that setting, the distinction is clear enough: we are ontologically committed
to the things we quantify over; ideological commitments are expressed by symbols in positions that
cannot be quantified into. But in a type-theoretic setting, we can quantify into predicate-position. So
distinctions of logical order no longer align with the quantifiable/unquantifiable distinction. See also
Williamson (2013: 260–1) and Trueman (2021: ch.7).

10

supplied externally. So, if Elsa is to follow Linnebo and Rayo’s recommendation,
she will have to countenance a suitably large index, �, in the metatheory, so that she
can both describe CTT�p and obtain Zr(�).

At this point, though, Elsa will simply want to ask: What guarantees that any
suitable � exists? Such an entity would have to stand at the head of a vast sequence
of type-indices. Well then: What guarantees that enough type-indices exist? Her
ontological worries about sets have not have been addressed; they have just become
worries about the ontology postulated within the metatheory.

3.3 Ideological-bootstrapping

This elementary problem undermines Linnebo and Rayo’s way of dealing with
Elsa. However, it is worth considering one possible line of response, via (what we
call) ideological-bootstrapping. This idea is independently interesting, and it will buy
Linnebo and Rayo some slack, but not enough slack to save their argumentative
strategy.

To define CTT�p, we must be given the type-index �. In the previous subsection,
we imagined Elsaworrying aboutwhether � exists. But—so this line of reply runs—
Elsa is mistakenly assuming here that �must be a type 0 entity. Instead, � could be
a higher-type entity, supplied by some ideologically-rich but ontologically-innocent
theory, CTT�

p. In turn, �might be some higher-type entity, supplied by some theory
CTT�p. And so on.23

The hope is that, somehow, considering a sequence of such theories will sooth
away Elsa’s ontological concerns. But, however exactly this line of response ismeant
to work, it will require that � > � > � > After all, Elsa’s worries kick in as soon
as the syntax of CTT�p is laid down; so her worries clearly cannot be addressed by
starting with some theory CTT�

p with � ≥ �.
This simple observation dictates the form that the attempted reply must take.

We are being asked to imagine a sequence of theories, CTT�1
p , . . . , CTT�=p , as follows:

(a) �1 is so small that Elsa has no serious qualms about its existence.
(b) As we move along the sequence, the ideology strictly increases (i.e. �8 < �8+1),

but the earlier theory proves the existence of an entity which indexes the
terms of the next theory (i.e. each CTT�8p proves the existence of something
with order-type �8+1 > �8).

(c) CTT�=p proves Zr(�), for some suitable �.

Call this response ideological-bootstrapping, since ideologically weaker theories are
used to define ideologically richer theories at step (b).24

23 Linnebo and Rayo (2014: 179) suggest something a little similar, though in terms of the plurally-
interpreted hierarchy (see §4.3) and in response to a slightly different concern.

24 Gödel (1933: 47) suggests something similar: given ‘the system (you can. . . take an ordinal �
greater than which can be defined in terms of the system (, and by means of it state the axioms
for the system � including all types less than �, and so on.’ However, Gödel is not discussing is not
trying to defend anything like the argument of §3.2. As such—and unlike in the context of ideological-
bootstrapping—Gödel need not confine himself to finite sequences of theories. For discussion of
Gödel, see Feferman (1995b: 37–8n.h), Tait (2001: 89–93), Koellner (2003: 21–24), and Incurvati (2020:
90–93).

11

(Note that we have assumed that the sequence of theories is finite. To explain
why, suppose someone instead suggests this: If Elsa has accepted the existence of an
$-sequence of theories CTT�1

p , CTT�2
p , . . . , then Elsa can bootstrap her way to their limit,

CTT�$p . This suggestion is spurious. If some CTT�8p is sufficient to introduce an
entity with order-type �$, then we can simply take CTT�$p as the 8+1th theory. The
important case is when none of the theories CTT�8p suffices to introduce anything
with order-type �$. But in this case, Elsa will worry whether ‘taking the limit’
is ontologically innocent; for, by assumption, she has not found any ontologically
innocent theory which supplies �$.)

Ideological-bootstrapping might work in specific circumstances. For example,
suppose Elsa is comfortable with the existence of $ + $ + 3, and so has no con-
cerns with the specification of CTT$+$+3

p . Invoking the Sets-from-Types Theorem,
CTT$+$+3

p proves Zr($+$). This allows Elsa to simulate the set-theoretic hierarchy
up to +$+$. Living within +$+$, Elsa can find an uncountable � well-ordered by
some relation <.25 Using this, Elsa can define a theory CTT�p , whose type indices
are the members of � as ordered by <. Since � is uncountable, CTT�p is straight-
forwardly richer than CTT$+$+3

p . Moreover, using CTT�p , Elsa can simulate a much
larger chunk of the set-theoretic hierarchy than +$+$; living within that chunk of
the hierarchy, she can find largerwell-orders; these can be used to supply the indices
for some further development of CTTp. . . and so on. This seems like a case where
ideological-bootstrapping might genuinely achieve something.

Nevertheless, there are hard limits on what ideological-bootstrapping can
achieve. In the simplest case, suppose Elsa insists on starting with CTT=p, for
some finite =, because she is uncertain whether there are infinitely many entities.
Since CTT=p only yields (surrogates for) finite well-orders, no amount of ideological-
boostrapping from this starting point will allow Elsa to obtain any infinite well-
order. So, whenever Linnebo and Rayo try to describe any theory CTT�p such that �
is infinite, Elsa will worry whether the theory itself even exists.

The shape of this problem is quite general. Say that � is a hereditary-point iff � is
an infinite cardinal and everything in +� is strictly smaller than � (so $ is the first
hereditary-point).26 When � is a hereditary-point, it is in principle impossible to
ideologically-bootstrap your way from below � to above �, since every entity below
level � is strictly smaller than � itself.

This problem is especially pertinent, given two facts about hereditary-points
and ZF. First, ZF proves that there are proper-class-many hereditary-points; but,
since any hereditary-point after $ would be pretty enormous, it is not unreason-
able to wonder whether any exist; and ideological-bootstrapping cannot quiet such

25 Note that � is not a von Neumann ordinal, i.e. � is not well-ordered by ∈. Still, the existence
of some such � and < follows (without Choice) from Hartog’s Lemma; see Potter (2004: 185) and
Incurvati (2020: 92).

26 Formally, � is a hereditary-point iff � is an infinite cardinal and any of these equivalent conditions
hold (we leave the reader to prove the equivalences): (1) (∀G ∈ +�)|G | < �; (2) �� = +� , where
�� = {G : |trcl(G)| < �}; (3) either � = $ or � is a i-fixed point, i.e. i� = �; (4) |+� | = �.
Characterisation (1) formalizes the definition in the text; (2) gives the idea its name.

12

qualms.27 Second, the standard models of ZF are the +� such that � is strongly
inaccessible; and every strongly inaccessible cardinal is a hereditary-point; so
ideological-bootstrapping cannot possibly address any ontological worries that an
Elsa-like character might have about the existence of any standard model of ZF.

The argument of §3.2 therefore stands essentially unchanged. Linnebo and
Rayo are mistaken to think that cumulative type theories can help us to overcome
ontological worries, since the very existence of the (syntactically individuated)
theories themselves requires a rich ontology in the metatheory.

4 CTT: superfluous type-restrictions
In §2.4, we discussed Gödel’s claim that STT’s type-restrictions were ‘superflu-
ous’. We should now make explicit something which we there left implicit: these
type-restrictions are superfluous given Gödel’s aims. Specifically, Gödel wanted to
establish a foundational, ‘formal system which avoids the logical paradoxes and
retains all [of] mathematics’ (1933: 46). Given those aims, CTT’s type-restrictions
are just as superfluous as STT’s; it is best to follow Gödel, and work with something
like Zr, with its untyped variables.

All of this is compatible with the idea that, given alternative aims, STT’s or
CTT’s type-restrictions might not be superfluous, but deeply important. As we
will show in this section, though, CTT’s type-restrictions are inevitably ‘superfluous
restrictions’, in the sense that any semantics for CTT also licenses the use of an
untyped variable and allows the ‘types’ to be defined internally. (Cf. points (1) and
(2) from §2.2.) So, in a slogan: CTT’s type-restrictions are superfluous, on any
semantics.

We will unpack the details in a moment. First, we should explain the phrase ‘a
semantics for CTT’. As we are using that phrase, a semantics for CTT is a general
framework within which to provide models of CTT, rather than a specific model
of some CTT�. (Compare the idea of ‘the possible worlds semantics for modal
language’.) So, in providing a semantics for CTT, we fix the meaning of phrases
like ‘a model of CTT’ and ‘an entity of type ’; the latter will be the sort of entity
which, according to the semantics, can be the value of a type variable.

4.1 The abstract argument for introducing untyped variables

Our argument begins with an uncontentious point: the stringently-stated rules for
CTT tell us that H�(G) is well-formed iff � > ; but these rules are needlessly
stringent, on any given semantics.

To see this, fix some semantics for CTT, and let � ≤ . The formula G � H�

is well-formed according to CTT. So, for any modelℳ and any type entity 0
and type � entity 1� from ℳ, either ℳ |= 0 � 1� or ℳ |= ¬0 � 1�. (Note:

27 Boolos (2000: 258) had qualms about the existence of the first ℵ-fixed point; calling it �, he wrote
that � is ‘so big. . . that it calls into question the truth of any theory, one of whose assertions is the
claim that there are at least � objects’. The first hereditary-point after $ is at least as large as Boolos’s
�; it is a i-fixed point, as in (3) of footnote 26, and hence an ℵ-fixed point.

13

what exactly this comes to will depend on the details of the semantics; but we are
proceeding abstractly for now and want to consider any semantics for CTT.) Now,
as explained in §1.2, the formula G � H� perfectly simulates the formula H�(G);
that is, it perfectly simulates the notion of applying a type � entity to a type entity.
So we could have allowed H�(G) to count as well-formed, even though � ≯ . So,
CTT’s stringently-stated type-restrictions are needlessly stringent.

To be clear, this is not an objection to CTT’s type-restrictions. We are really just
repackaging a point we made in §1.2, and also made by Linnebo and Rayo (2012:
282–3), that we can liberalise CTT’s stringently-stated formation rules, and allow
that H�(G) is well-formed for any type-indices and �. From a purely formal point
of view, this changes almost nothing. So, in what follows, we will simply allow that
CTT counts every formula H�(G) as well-formed.

Significantly, though, CTT still lacks untyped variables. But, for exactly the same
reason, this is also needlessly stringent, on any given semantics.

To see this, fix some semantics for (liberally formulated) CTT. Now H�(G) is
well-formed for any and �. So, for any modelℳ and any type entity 0 and
type � entity 1� from that model, eitherℳ |= 1�(0) orℳ |= ¬1�(0). That is, any
model assigns a truth value to the application of any entity to any entity, whatever
their types might happen to be. So we could have allowed the untyped atomic
formula, H(G), to count as well-formed: whatever specific values the variables take,
the formula would just amount to applying some entity to some entity, which is
exactly what the semantics allows.

The upshot is that any semantics for CTT also licenses the use of untyped
variables. This time, though, we do have an objection to CTT’s type-restrictions.
Whereas stringently-formulated CTT can simulate any typed-formula H�(G), via
G � H�, it lacks the technical resources to simulate the untyped-formula H(G).
Untyped variables have to be added by hand. But, once we have added them, we
will have moved from a typed to an untyped theory; if we choose to retain ‘typed’
variables, then they will just behave as restricted untyped variables.

Of course, if there had been no consistent way to introduce untyped variables,
then CTT’s type-restrictions would have been far from superfluous. But, in this
sort of a context, theories like Zr provide us with a clear method for consistently
introducing untyped variables.28 Moreover, they also provide us with a paradigm
for how to define the notion of ‘type’ (i.e. rank) within the theory. So CTT’s type-
restrictions are genuinely superfluous.29

28 We do not need all of Zr; we can make do with the subtheory LT. For details, see §B and Button
(forthcoming).

29 Pedantic Objection. Perhaps CTT�’s externally supplied types are not wholly superfluous, since
they allow us to formulate the intrinsically infinitary Limit-rules which gives CTT� a kind of strength
which a recursive theory like Zr cannot simulate (see (3) from §2.2). Pedantic Reply. Those who want
to lean on CTT�’s infinitary features can incorporate them within a Zr-like setting. We will illustrate
how using Zr itself. For each index < �, introduce a new constant, 2 ; add to Zr each sentence ‘2 is
a von Neumann ordinal’; add the sentence ‘2 ∈ 2�’ iff < �; for each limit � < �, add the infinitary
rule: from)(2) for all < �, infer (∀G ∈ 2�))(G).

14

4.2 Illustration: the class semantics

The argument of the previous subsection is very abstract. Tomake it more concrete,
in this subsection and the next, wewill consider two specific semantics in detail: the
class semantics, and the plural semantics. Just as our abstract argument predicts,
both semantics clearly license the use of untyped variables.

(To avoid any unfortunate misunderstandings: we offer these semantics merely
as illustrations. When we say that no semantics could justify the adoption of
CTT’s type-restrictions, we are not making an inductive inference from these two
examples; that conclusion was established by the abstract argument of §4.1.)

We start by considering the class semantics. To define a model for CTT within
this semantics, we first specify some suitable set of urelements,* . We then stipulate
that the type entities are the members of*+1, where we define:

*1 ≔ * ∪ {∅} *+1 ≔ ℘(*) ∪* *� ≔

⋃
<�

* for limit �

Finally, we offer a general clause governing the semantics of atomic sentences:

‘1�(0)’ is true iff the referent of ‘0’ is a member of the referent of ‘1�’.

Uncontroversially, CTT is sound for the class semantics. A stringently-typed for-
mula like ‘12(00)’ will be true (in a model) iff the referent of ‘00’ is a member of the
referent of ‘12’. A liberally-typed formula like ‘10(02)’ will also be true (in a model)
iff the referent of ‘02’ is a member of the referent of ‘10’; and this will inevitably be
false, since the latter is guaranteed to be an urelement, i.e. an individual without
members.

Our semantic clause for atomic sentences employed type restrictions. However,
on the class semantics, the type-restrictions are straightforwardly superfluous. We
can easily offer a similar semantic clause for untyped terms:

‘1(0)’ is true iff the referent of ‘0’ is a member of the referent of ‘1’.

Otherwise put: there is no barrier to introducing untyped variables, whose values
can be any individual or class. Of course, given the old paradoxes, we will have to
take care in introducing untyped variables. However, as we have already discussed,
Zr-like theories show us how to do this safely.

4.3 Illustration: the plural semantics

The class semantics concerns a class-hierarchy built from a basis of individuals.
The plural semantics concerns a plural-hierarchy built from a similar basis.30 In
a little more detail, we use the phrase ‘plural∗’ as a catch-all for whatever we find
at any level in the plural hierarchy, i.e., any object, any objects, any objectses, . . . ,
any objects(es). . . .31 We then offer this general clause governing the semantics for
atomic sentences:

30 Rayo (2006) develops this plural interpretation.
31 Our word ‘plural∗’ is a ‘pseudo-singular device’, in the sense of Oliver and Smiley (2016: ch.15);

in natural language, it infelicitously behaves like a singular term. Florio and Linnebo (2021: §11.8)
use ‘higher plurality’ here.

15

‘1�(0)’ is true iff what ‘1�’ refers to includes what ‘0’ refers to.32

So ‘12(00)’ is true iff what ‘12’ refers to includes what ‘00’ refers to; and ‘10(02)’ is
true iff what ‘10’ refers to includes what ‘02’ refers to. But equally, the semantic
clause applies perfectly well to untyped terms:

‘1(0)’ is true iff what ‘1’ refers to includes what ‘0’ refers to.

Again: there is no barrier to introducing untyped variables, whose values can be
any plural∗.

As before, care must be taken to preserve consistency. But we know how to take
care: roughly stated, we just need to do for plurals∗what Zr does for classes/sets. In
more detail, instead of setting up a plural∗-hierarchy using type-restricted variables
with externally supplied type-indices, we can reason about plurals∗ using anuntyped
variable, with the plurals∗ arranged into a cumulative hierarchy according to their
rank (with ‘rank’ defined within the theory, using our untyped variable). And this
work has been carried out carefully: Oliver and Smiley (2016: ch.15) and Florio
and Linnebo (2021: §12.6) both present consistent plural logics featuring untyped
variables. Indeed, Florio and Linnebo develop their untyped plural logic precisely
by starting with the CTT on the plural semantics, and then collapsing the types in
the way that we have described.

5 STT: type-restrictions justified
We have argued that CTT’s type-restrictions are inevitably superfluous. They are
unnecessary for the aim of providing a foundational theory for mathematics, and
they cannot be justified semantically, since any semantics for CTT will permit the
introduction of an untyped variable.

In this section, we will show that STT’s type-restrictions are not similarly super-
fluous. We can justify the adoption of STT’s type-restrictions by invoking the Fregean
semantics. Indeed, on this semantics, a formula is intelligible iff it is well-formed in
STT.

5.1 Against referentialism

In §§4.2–4.3,weused the class andplural semantics to illustrate our objection toCTT.
Both of these semantics are referentialist. By this we mean that both semantics treat
every type of term as a type of referring term: every type of term performs the same
semantic role—referring—and all that changes is what they refer to—individuals,
classes/plurals∗, or something else.33

32 The inclusion is vertical in the sense of Oliver and Smiley (2016: ch.15). Vertical inclusion only
ever holds between plurals∗ of different levels, and is analogous to set-membership. Vertical inclusion
is to be contrastedwith horizontal inclusion, which is analogous to subsethood: 1 horizontally includes
0 iff 1 vertically includes everything that 0 vertically includes.
33 We are speaking as if variables refer. This is one way to gloss a Tarskian referentialist approach

to semantics: the value of a variable (on a Tarskian valuation) can be thought of as the variable’s

16

The class and plural semantics render CTT’s type-restrictions superfluous, pre-
cisely because they are referentialist. After all, if every type of term performs the
same kind of semantic role as every other type of term, then every type of term can
be meaningfully substituted for every other type of term. In that case, as we argued
in §4.1, the semantics will also allows us to introduce an untyped variable. It fol-
lows, immediately, that any semantics which might justify STT’s type-restrictions
will have to be non-referentialist; in other words, it will have to assign different
kinds of semantic role to different types of term.

Now, at one time, thismight have seemed like an impossible demand. According
to the old Quinean (1970: 66–8) orthodoxy, we can only quantify into the position
of a referring term; so type theory—which allows us to bind variables of every
type—must be given a referentialist semantics. Fortunately, times have changed,
andphilosophers are increasinglywilling to accept quantification into other kinds of
position.34 In what follows, we will simply assume that the old Quinean orthodoxy
is mistaken, and will present a particular non-referentialist semantics—the Fregean
semantics—which justifies STT’s type-restrictions.

5.2 Conceptual but referentialist semantics

The Fregean semantics is a variety of conceptual semantics. On a conceptual seman-
tics, type theories are theories of predication:35 ‘00’ is a name which refers to an
object; ‘11’ is a first-level predicate which expresses a property of objects (a type 1
property);36 ‘22’ is a second-level predicate which expresses a property of properties
of objects (a type 2 property); and so on.

This way of characterising conceptual semantics is schematic, and we get differ-
ent versions of the semantics when we supply different accounts of what it means
for a predicate to express a property. On one view of predication, predicates ‘ex-
press’ properties in the sense that they refer to properties, just as names refer to
objects. To illustrate, take the following sentence:

(1) Socrates pontificates

According to this view of predication, ‘pontificates’ refers to the property Pontifica-
tion.37 Clearly, combining this account of predicationwith the conceptual semantics
yields another brand of referentialism. Every type of term is still referential; all that

referent (on the valuation). In certain contexts, describing variables as referring is misleading (see
Button and Walsh 2018: ch.1), but we do not think it will do any harm here. If we wanted, we could
say that a semantics is referentialist iff it treats every type of constant as a referring term, and then use
a Robinsonian or hybrid approach to handle variables (again, see Button and Walsh 2018: ch.1).

34 See Prior (1971: ch. 3), Boolos (1985), Rayo and Yablo (2001), Williamson (2003: 458–60, 2013: ch.
5), Wright (2007), and Trueman (2021).

35 This point is emphasised throughout Florio and Jones (2021).
36 We have taken the label ‘conceptual semantics’ from Linnebo and Rayo (2012: 272), who use

‘concept’ instead of ‘property’. Of course, Linnebo and Rayo are following Frege here. However,
this use of ‘concept’ is potentially misleading; we prefer ‘property’, which avoids any psychological
overtones.

37 This was arguably the standard way of thinking about predication before Frege introduced his
alternative (see below), and plenty of philosophers after Frege have advocated versions of it too: see
Strawson (1974, 1987), Bealer (1982: ch. 4), Wiggins (1984), and Gaskin (1995, 2008).

17

changes is whether it refers to an ordinary individual (like Socrates) or to some-
thing within a property-hierarchy (like Pontification). We then have the following
semantic clause for atomic sentences:

‘1�(0)’ is true iff the referent of ‘0’ instantiates the referent of ‘1�’

This allows us to make sense of ‘1�(0)’, for any types and �. For example, ‘10(00)’
is true iff the referent of ‘00’ instantiates the referent of ‘10’. Now, admittedly, this
formula would correspond to something slightly peculiar in natural language. If
‘00’ referred to Socrates, and ‘10’ referred to Plato, then we might try to render
‘10(00)’ as:

(2) Socrates Plato

This is scarcely grammatical English. Still, for referentialists about predication, (2)
is intelligible: it says that Socrates instantiates Plato. Indeed, precisely this point is
made by Magidor (2009), who insists that (2) is perfectly meaningful and trivially
false. We are not agreeing with Magidor here, but we do think that referentialists
about predication should agree with her. Moreover, and as in §4.1, referentialists
about predication will ultimately find type-restrictions superfluous; nothing will
prevent them from introducing untyped variables and insisting that ‘1(0)’ is true iff
the referent of ‘0’ instantiates the referent of ‘1’.

5.3 Fregean semantics

There is, however, a non-referentialist version of the conceptual semantics: it is a
Fregean semantics.

Unlike referentialists, Fregeans do not think that predicates refer to properties
(not, at least, in anything like the sense that a name ‘refers’).38 Rather, they think
that the role of a predicate is to say something of an object; for example, ‘pontificates’
says of an object that it pontificates. This is the sense in which Fregeans think that
predicates are ‘incomplete’, and they indicate this by writing their predicates with
gaps. So rather than writing the predicate in (1) as ‘pontificates’, they write it as ‘x
pontificates’, where ‘x’ marks a gap for a name to go. We can then say that sentence
(1) is true iff ‘x pontificates’ says something true of the referent of ‘Socrates’, i.e. iff
Socrates pontificates.39

From this Fregean perspective, (2) is not just ungrammatical, but unintelligible.
We arrive at it by taking (1) and replacing its predicate, ‘x pontificates’, with a
referring name, ‘Plato’. Names and predicates are made to work together, but two

38 For discussion of the very different sense in which predicates could be said to refer, see Trueman
(2021: chs. 4–6).

39 This account of predication is what we take to be suggested by Frege’s (e.g. 1891, 1892, 1893:
§31) discussions of predication; however, we do not want to commit to any exegetical claims here. It
is worth noting that the gap between our Fregeans and the referentialists about predication need not
be as large as it initially appears. Even if referentialists think of words like ‘pontificates’ as referring
terms, on a par with names like ‘Socrates’, concatenation behaves like a Fregean predicate: ‘xy’ says
of a pair of objects that the former instantiates the latter. This point is originally due to Frege (1892:
192–3), and is further developed by Trueman (2021: §§3.4& 8.4).

18

names cannot work together in the same way. It is not within a name’s remit to
say anything of an object; names just refer to objects. And that is why (2) is a
meaningless string: neither name says anything of the referent of the other (let
alone something true or false).

Now consider the following sentence:

(3) Someone pontificates

This sentence is not made by combining a predicate with a name. Instead, it is
made by combining two predicates, ‘x pontificates’ and ‘Someone Y’. Crucially,
though, these are two different types of predicates: ‘x pontificates’ is a first-level
predicate, meaning that ‘x’ marks a gap for a name; ‘Someone Y’ is a second-level
predicate, meaning that ‘Y’ marks a gap for a first-level predicate. Just as first-level
predicates play a different kind of semantic role from the names they can take as
input, second-level predicates play a different kind of semantic role from the first-
level predicates that they can take as input. We might describe this role thus: a
second-level predicate says something of things said of objects. This means that (3)
is true/false iff ‘Someone Y’ says something true/false of what ‘x pontificates’ says
of objects. Specifically: ‘SomeoneY’ says something true ofwhat ‘xpontificates’ says
of objects iff ‘x pontificates’ says something true of someone; and it says something
false of what ‘x pontificates’ says of objects iff ‘x pontificates’ says something false
of everyone.

Again, from this Fregean perspective, it is easy to see that we cannot meaning-
fully substitute a name for the first-level predicate in (3). Attempting to do this
would yield:

(4) Someone Plato

This string is not just ungrammatical, but meaningless. To be meaningful, the input
to ‘Someone Y’ must be the kind of expression that says something of objects. But
‘Plato’ refers to an object, rather than saying anything of objects (let alone something
true of someone or false of everyone). So, if we try to plug ‘Plato’ into the argument-
place of ‘Someone Y’, we end up with garbage.40

The crucial point is that, on the Fregean semantics, different types of term play
different types of semantic role: ‘00’ is a name which refers to an object; ‘11’ is a
first-level predicate which says something of objects; ‘22’ is a second-level predicate
which says something of things said of objects; and so on. And rather than having
a single semantic clause which applies to all atomic sentences, we have different
clauses for different types of predication:

‘11(00)’ is true iff ‘11’ says something true of the referent of ‘00’
‘22(11)’ is true iff ‘22’ says something true of what ‘11’ says of objects
. . .

40 Whitehead and Russell (1910: Introduction, ch.II, §4) present a similar argument (in their dis-
tinctive terminology).

19

These semantic clauses allow us to make sense of ‘1=(0<)’ iff = = < + 1. This is how
the Fregean semantics justifies STT’s type-restrictions: a formula is intelligible on
the Fregean semantics iff it is well-formed in STT.

For the same reason, the Fregean semantics also prohibits the introduction of
untyped variables. Untyped variables would need to be able to take any entity of
any type as their values. But, on the Fregean semantics, there is no one sense in
which different types of entity could be the ‘value’ of a variable; the sense in which
an object is the value of a type 0 variable is incommensurable with the sense in
which a type 1 property is the value of a type 1 variable.

To be clear, we are not trying to argue here that anyone should adopt the Fregean
semantics.41 Our point here is just that STT’s type-restrictions, unlike CTT’s, are
justified by at least one semantics.42

5.4 ‘Cumulative types’ as ambiguous

We have just argued that the Fregean semantics prohibits the introduction of un-
typed variables. But what it cannot prohibit, of course, is the introduction of
ambiguous variables, which sometimes behave as one type, and sometimes behave
as another. And in fact, this provides the Fregeans with one way of starting to
make sense of CTT. Specifically, they can treat 00 as an ambiguous term: in 11(00),
it behave as a name, and so refers to an object; in 22(00), it behaves as a first-level
predicate, and so says something of an object.

If that is how we are to read formulas like 22(00), though, then they no longer
represent any departure from STT. Working in STT, we can introduce an injective
type-raising function, ↑, from objects to type 1 properties; so 00 is an object, but ↑00

is a type 1 property (We also lay down rules to ensure that ↑00 behaves as a suitable
surrogate for ‘the 01 such that 01 ≡ 00’; for details, see §C.) To avoid ambiguity,
we can then rewrite 22(00) as 22(↑00), which is now well-formed according to STT’s
type-restrictions.

This idea can be extended across all finite types. The result is STT↑, which
augments STT with a theory of type-raising functions, like ↑, whilst retaining STT’s
type-restrictions. We can then prove the following strong result: CTT$ and STT↑
are definitionally equivalent (where CTT$ is the fragment of CTT which uses all and
only finite type indices; for details, see §C).

There is, however, an important limitation to this equivalence result. Since
entities do not really cumulate in STT↑, STT↑ cannot accommodate transfinite types,

41 For an extended argument to that effect, see Trueman 2021.
42 We have considered two conceptual semantics: referentialist and Fregean. Wright (1998),

MacBride (2011), Liebesman (2015), and Rieppel (2016) offer a third approach, which attempts to
provide a middle-way between referentialism and Fregeanism. They agree with referentialists that ‘x
pontificates’ denotes Pontification, but they agree with Fregeans that ‘x pontificates’ says of objects
that they pontificate. Given the latter point, they agree that first-level predicates play a different kind
of semantic role from names; so they agree with Fregeans that ‘22(00)’ is unintelligible. However,
unlike Fregeans, they cannot embrace STT: according to the middle-way, every type 1 property is also
a type 0 object, but STT-Comprehension straightforwardly entails that there are strictly more type 1
properties than objects. Moreover, one of us (Trueman 2021: chs. 4 & 8) has also argued at length that
this middle-way is philosophically incoherent.

20

and so cannot recapture any transfinite uses of CTT. This is significant, because
Linnebo and Rayo’s main argument for CTT invokes transfinite types (see §6). For
this reason, Linnebo and Rayo must have intended CTT to be taken at face-value,
rather than as a disguised form of STT↑. Unfortunately for them, though, nothing
could justify CTT’s type-restrictions, taken at face-value; that was the lesson of §4.

6 The Semantic Argument
We have established an important difference between CTT and STT: nothing could
justify CTT’s type-restrictions, but the Fregean semantics can justify STT’s type-
restrictions. In this section, we will respond to Linnebo and Rayo’s Semantic Argu-
ment for CTT. This argument is designed to show that STT is semantically unstable,
and that restoring stability pushes us to CTT. We will not present any new objec-
tions to CTT in this section; our aim is simply to explain how an advocate of the
Fregean semantics should reply to Linnebo and Rayo.

6.1 Naïve Optimism and Naïve Union

Linnebo and Rayo introduce us to two notions:

• A �-order language is a language which contains variables of all (and only) the
types < �.43

• A generalized semantic theory for a language is ‘a theory of all possible interpre-
tations the language might take’ (Linnebo and Rayo 2012: 275). In particular,
a generalized semantic theory for a �-order language provides an interpreta-
tion which allows any type entity to be the value of a variable G, for each
 < �.44

These notions are connected by two formal results (Linnebo and Rayo 2012: Ap-
pendix B):

Blocker Theorem. No language can provide a generalized semantic theory for itself.
Enabler Theorem. For any �, let �∗ = �+2 if � is a limit and �∗ = �+1 otherwise; then

a �∗-order language can provide a generalized semantic theory for a �-order
language.

The Blocker Theorem holds by familiar, liar-like reasoning. Moreover, as Florio and
Shapiro (2014: 162–3) note, it shows that these twoprinciples are jointly inconsistent:

Naïve Optimism. Any language can be given a generalized semantic theory.
43 It can also contain type +1 constants, for any < �.
44 This is very slightly different fromwhat Linnebo and Rayo (2012: 300) actually say: they consider

interpretations of constants (see footnote 43). The particular requirement on generalized semantic
theories is an application of the principle that for each , it is possible to quantify unrestrictedly over
all entities of type . (Linnebo and Rayo (2012: 274) only state this principle for type 0, but their
argument requires that the principle apply to all types; Florio and Linnebo (2021: §11.5) explicitly
commit themselves to the fully general principle.) We discuss the broader concept of absolute generality
in §7.

21

Naïve Union. For any languages, there is a union language, which combines all the
expressions of those languages.

To see the problem: by Naïve Union, there is a language, �, which is the union of
all languages; by Naïve Optimism,� can be given a generalized semantic theory in
some language �; by the Blocker Theorem, � is not a sub-language of �; but this
contradicts the fact that � is the union of all languages, including�.

6.2 Linnebo and Rayo’s Semantic Argument

Linnebo and Rayo avoid contradiction by restricting Naïve Union as follows:

Limited Union. For any limit �, if there is a �-order language for every � < �, then
there is also a �-order language.45

Having restricted Naïve Union in this way, Linnebo and Rayo’s (2012: 275–81) Se-
mantic Argument for CTT nowgets going. Here is a very brief summary. Supposewe
start with an ordinary first-order language. By Naïve Optimism, this language has
a generalized semantic theory. By the Blocker Theorem, this generalized semantic
theory cannot be given in a first-order language; but, by the Enabler Theorem, it
can be given in a second-order language. Naïve Optimism now requires that this
second-order language has a generalized semantic theory; as before, the Blocker
and Enabler theorems will lead us to provide this semantics in a third-order lan-
guage. This process repeats, running through every finite order. At this point,
Limited Union kicks in, giving us an $-order language which combines all of the
finite orders into a single language. To present a generalized semantic theory for
this language, Naïve Optimism and the Blocker and Enabler Theorems push us up
to an $+2-order language. And there is now no stopping us: Naïve Optimism,
Limited Union and the two theorems keep pushing us to countenance languages of
higher and higher orders. Moreover, when we supply the semantics for variables of
some limit type �, the only plausible option is to allow them to take all entities of all
types < � as values. And this requires that at least some of our types be cumulative.

6.3 Rebutting the Semantic Argument

We agree with the following conditional: if we accept both Naïve Optimism and
Limited Union, then there is good reason to embrace CTT. Our response is to reject
Naïve Optimism (and to insist on Naïve Union). However, we will show that our
stance is more principled that Linnebo and Rayo’s.

45 Linnebo and Rayo (2012: 276). Note that they also (2012: 294, 2014: 176) consider a second,
slightly differently restricted principle: For any ‘definite totality’ of languages, there is a union language.
For our purposes, there is no significant difference between these formulations. Linnebo and Rayo
(2014: 179–80) treat ‘definite totality’ as an unanalysed notion. However, the function of this notion
is as follows: given any ‘definite totality’ of languages, we can comprehend a limit-index, �, which
acts as an upper bound of the orders on the languages among that ‘definite totality’. (This notion of
an ‘upper bound’ makes sense, since every CTT-like language has well-ordered indices.) So, once we
recall that we have only insisted that our type-indices be well-ordered, not that they be ordinals, the two
principles come to the same thing.

22

Linnebo and Rayo (2012: 286) motivate Limited Union as follows: whenever
you are ‘prepared to countenance languages of order � for every � < �’, you ‘should
also countenance languages of order �’, since ‘they would be made up entirely of
vocabulary that had been previously deemed legitimate’. This line of reasoning
is compelling. However, it clearly generalizes, to provide a motivation for Naïve
Union. After all: whenever you are prepared to countenance some languages, you
should also countenance their union, for that union would be made up entirely
of vocabulary that had been previously deemed legitimate. In short: the only
motivation Linnebo and Rayo offer for Limited Union is really a motivation for
Naïve Union.

Of course, Naïve Union is inconsistent with Naïve Optimism. So, if there were a
stellar argument in favour of Naïve Optimism, we could see the retreat from Naïve
Union to Limited Union as a simple instance of the heuristic that, on encountering
a contradiction, we should aim to get as close as we can to what we initially wanted,
without falling into inconsistency.46 Regrettably, though, Linnebo andRayoprovide
no argument for Naïve Optimism. So, prima facie, an equally good instance of that
heuristic would be to accept Naïve Union and instead restrict Naïve Optimism. This
threatens to leave us with a deadlock, between those who want to restrict Naïve
Union (and so embrace CTT), and those who want to restrict Naïve Optimism (and
so might reject CTT).

Fortunately, the argument of §5 provides a principled way to break the dead-
lock: if we are working with a Fregean semantics for the types, then we should
restrict Naïve Optimism. Specifically, we should replace Naïve Optimism with the
following:

Finite Optimism. Any language of any finite order can be given a generalized se-
mantic theory.

To be clear: the motivation for this restriction is not simply to avoid contradiction.
(As far as restoring formal consistency goes, Finite Optimism is serious overkill.)
Rather, Finite Optimism expresses the exact amount of optimism which is even
coherent on the Fregean semantics. Since Fregean types cannot cumulate, we cannot
make any sense of the idea of an $+2-order language on the Fregean semantics.
Finite Optimism and Naïve Union push us to countenance an $-order language,
like STT itself, but we are pushed no further. Otherwise put: STT is the principled
limit on Fregean types.

7 Partially cumulative types
In this paper, we have critically discussed CTT, which is the approach to cumulative
types favoured by Linnebo and Rayo. In this final section, we will discuss an
alternative approach to cumulative types, due to Florio and Jones (2021: §5).

CTT is cumulative in two senses: first, 1�(0) is well-formed whenever � > ;
second, the values of G� include all of the values of G, whenever � ≥ . Florio and

46 Cf. Maddy (1988: 485, 492ff.) on the rules of thumb ‘one step back from disaster’ and ‘maximize’;
and cf. Linnebo and Rayo (2012: 274, esp. fn.8) on the rule of thumb: ‘Because we can.’

23

Jones’ cumulative type theory—call it FJT—is cumulative only in the first of these
senses. Indeed, for them, no type entity is a type � entity, when ≠ �. As we
will see, this difference between CTT and FJT is a double-edged sword: on the one
hand, it provides Florio and Jones with the means to defend FJT from the argument
we offered against CTT in §4; on the other hand, it leaves so little distance between
FJT and STT, that FJT is best seen as a misleadingly formulated version of STT.

7.1 FJT

Since entities do not cumulate up the types in FJT, its quantifier rules must be more
restrictive than CTT’s (see §1.2). Indeed, FJT has exactly the same quantifier rules as
STT (see §1.1). Consequently, in FJT, you cannot generalize about everything that has
a type 2 property bywriting∀G1(02(G1) →)(G1)).47 In FJT, that formula generalizes
over every type 1 property that has 02, but it says nothing about any objects that
have it. To cover everything that might have 02, we must conjoin that formula with
∀G0(02(G0) →)(G0)). Indeed, to generalize over everything that might have a type
= property, we will need = conjuncts. This is illustrated by Florio and Jones’ (2021:
55) version of Comprehension:

FJT-Comprehension. ∃I= ∧
8<= ∀G 8(I=(G 8) ↔)8(G 8)), for each = > 0, whenever each

)8(G 8) is well-formed and does not contain I= .

The various)8s need have nothing in common, so this is an instance of FJT-
Comprehension:

∃I2(∀G1(I2(G1) ↔ G1 = G1) ∧ ∀G0(I2(G0) ↔ G0 ≠ G0))

As Florio and Jones (2021: 61) observe, this entails ∀G0∀H1 G0 . H1, where ≡ is
defined as before. More generally, in FJT, if = ≠ < then ∀G=∀H< G= . H< . So FJT
contradicts CTT’s Type-Raising principle (see §1.2).

7.2 FJT is finitary

In formulating FJT-Comprehension, we have reverted to using natural numbers
as type indices, rather than allowing that types might be transfinite (contrast the
formulation of CTT-Comprehension in §1.2). We have done this for a simple reason:
formulating FJT-Comprehension for a transfinite type, �, would require infinitary
conjunction:

∃I�
∧
<�

∀G(I�(G) ↔)(G))

But FJT does not allow for infinitary conjunction. Consequently, FJT cannot com-
prehend any transfinite types.48

47 Throughout this section, we assume a conceptual semantics, and so speak of type = > 0 entities
as properties. Florio and Jones (2021: 45–7) offer FJT as a theory of predication, and we also think that
STT is best understood as a theory of predication.

48 At least: Florio and Jones nowhere discuss infinitary conjunction, and only ever use natural
numbers as type indices.

24

Much of our discussion of CTT focussed on the Sets-from-Types Theorem (see
§§2–3). However, due to its finitary nature, FJT cannot establish any similar result.
Indeed, if we add surrogates for purity and extensionality to FJT, the resulting
theory is decidable.49

7.3 Interpreting FJT’s types

Having discussed the Sets-from-Types Theorem, we then argued that CTT’s type-
restrictions cannot be justified semantically (see §4). We began with Linnebo and
Rayo’s (2012: 282–3) observation that, even if we stuck with the stringent formation
rules for CTT, we could always apply 1� to 0 in CTT with the formula 0 � 1�,
which is defined as follows (where � = max(, �) + 1):

0 � 1� iffdf (∃G� ≡ 1�)G�(0)

We then argued that, since every type of entity can be applied to every type of entity
in CTT, there can be no barrier to introducing untyped variables.

This line of argument is not straightforwardly applicable to FJT. Since entities
do not cumulate up the types in FJT, 1= is not identical to any entity of type
: ≠ =. So, as Florio and Jones (2021: §7) stress, it is doubtful whether 0< � 1= , i.e.
(∃G: ≡ 1=)G:(0<)with : = max(<, =) + 1, provides us with a way of applying 1= to
0< in FJT.

Nonetheless, we are still left with the question of how to justify the type-
restrictions imposed by FJT. Florio and Jones (2021: 45–7) explicitly intend to
provide FJT with some version of the conceptual semantics, but it is unclear which
version they could have in mind. The referentialist version that we discussed in
§5.2 licenses the use of an untyped variable; the Fregean version that we discussed
in §5.3 justifies STT’s type- restrictions; so it seems that neither of these versions of
the conceptual semantics could serve their purpose.

In fact, appearances are somewhat misleading here. It is true that, when FJT
is taken at face value, the Fregean semantics cannot justify its type-restrictions.
However, it turns out that the Fregean semantics can make good sense of FJT, if its
terms are interpreted as being systematically ambiguous, in the following way: in
‘22(11)’, ‘22’ expresses a type 2 property, but in ‘22(00)’, it expresses a type 1 property.
(Compare the interpretation of CTT in STT↑ of §5.4.)50

This ambiguity can easily be handled by augmenting STT with a theory of
type-lowering relations. We start by introducing a type-lowering relation, ⊲, from
type 2 to type 1. We then read ‘22(11)’ verbatim, but treat ‘22(00)’ as shorthand for

49 The surrogate for extensionality is the scheme, for all = > 0: ∀G=∀H=(∧8<= ∀I 8(G=(I 8) ↔
H=(I 8)) → G= = H=)); the surrogate for purity is Type-Purity (see §B.2). To see that the resulting
theory is decidable, note two facts: (i) all its variables are explicitly typed; and (ii) for each =, it proves
that there are exactly ℎ(=) type = entities, where ℎ(0) = 1 and ℎ(= + 1) = 2ℎ(0)+...+ℎ(=); it follows that
every quantifier provably has a fixed finite range.

50 Eagle-eyed readers will notice a slight difference between this and §5.4. When dealingwith CTT,
we read 22(00) as 22(↑00), since CTT licenses Type-Raising, which projects entities upwards through
the levels of the type hierarchy. By contrast, FJT contradicts Type-Raising; and FJT-Comprehension
effectively projects entities downwards.

25

‘∀G1(22 ⊲ G1 → G1(00))’. This latter formula is perfectly well-formed according to
STT’s type-constraints, and the idea can be extended across all types. The resulting
theory is STT⊲. We can then prove that FJT and STT⊲ are definitionally equivalent.
(For details and proof, see §D.)

We think that FJT is best understood as a (somewhat misleading) formulation
of STT⊲. To begin with, there is no obvious reason to resist this interpretation of
FJT. Linnebo and Rayo had a clear technical reason for refusing to interpret CTT
via STT↑: the major selling point of CTT was meant to be its ability to accommodate
transfinite types (see §6). But, as we saw in §7.2, FJT is just as limited to finite types
as STT. So FJT, like STT, cannot go beyond Finite Optimism.

Not only is there no reason for Florio and Jones to resist the interpretation of FJT
as STT⊲, there is good reason for them adopt it. Their (2021) main aim is to argue
that cumulative type theories can accommodate absolute generality. However, as we
will now show, FJT can accommodate absolute generality iff it is taken as a mere
notational variant of STT⊲.

7.4 STT accommodates absolute generality

We start by explaining how STT accommodates absolute generality.
In traditional set-theoretic semantics, domains are taken to be sets. In STT, we

can think of them as properties. For example, we can think of a domain of objects
as a type 1 property, 31, and we can say that G0 is in that domain iff 31(G0). As
Williamson (2003) clearly explains, there is a real advantage to thinking of domains
in this type-theoretic way. There is no set of all objects, and so if we think of
domains as sets, unrestricted quantification over all objects is impossible. But STT
straightforwardly supplies a type 1 property,*1, held by all objects, i.e.:51

∀G0*1(G0)

(Nothing special is signified by our use of a capitalized ‘*’ here; it simply aids
readability.)

Whilst*1 includes all the objects, one might worry that it is still restricted, since
it includes no type 1 properties. But, in the context of STT, this worry is toothless;
no sense can be made of this idea in STT. To regard*1 as restricted, we would have
to be able to make sense of the idea of a more inclusive domain, which contains
both objects and properties.52 But that is incoherent in STT. To say ‘3 contains both
objects and properties’ is to say ∃G0∃H1(3(G0) ∧ 3(H1)), which is just ungrammatical
in STT. For 3(G0) to be grammatical, 3 must be type 1; for 3(H1) to be grammatical,
3 must be type 2; but every term has a unique type.

Suppose, then, we introduce suitably typed domains, 31 and 32. In STT, these
domains are incommensurable, to useWilliamson’s (2003: 458) phrase. This does not
mean that 31 and 32 have different members; it means that we cannot even express

51 Via ∃I1∀G0(I1(G0) ↔ G0 = G0), which is an instance of STT-Comprehension and CTT- and
FJT-Comprehension.

52 We are not saying that there would have to be a more inclusive domain, only that it would have
to make sense to say that there is. If) make sense, then so must ¬).

26

the idea that they have the same (or different) members. We might put this by
saying that, in STT, we cannot articulate a univocal notion of Thing or Entitywhich
applies to both objects and properties. (We can still talk about ‘type 0 entities’,
‘type 1 entities’, etc., but we cannot think of ‘entity’ as a recurring categorematic
component in these constructions.) So, if a first-order quantifier quantifies over all
objects, then it quantifies over absolutely every thing it makes sense to imagine that
it might quantify over.

We can put the same point slightly differently by drawing on Florio and Jones’
(2021: 49) explication of unrestrictedness: ‘an unrestricted domain is a domain such
that true universal quantification over it precludes there from being absolutely
any counterexamples whatsoever.’53 This informal explication can be converted
into a formal definition in STT. To say that ‘everything melted’ is true over the
domain things in the freezer is just to say that ∀G(G is in the freezer → G melted).
More generally, to say that ∀G=−1H=(G=−1) is true over domain 3= is just to say
∀G=−1(3=(G=−1) → H=(G=−1)). To say that there are absolutely no counterexamples
to this restricted generalization is to say that the generalization still holds good even
when we lift the restriction, and return to ∀G=−1H=(G=−1). And finally, to say that
there are absolutely no counterexamples to any true quantification over 3= is just to
generalize over all H= . Assembling this, we obtain, for all = > 0:

(1) 3= is unrestricted iffdf
∀H=(∀G=−1(3=(G=−1) → H=(G=−1)) → ∀G=−1H=(G=−1))

This definition is adequate because, in STT, only generalizations of the form
∀G=−1H=(G=−1) can be true over 3= . And *1, as introduced at the start of this sub-
section, is unrestricted according to (1): since ∀G0*1(G0), if ∀G0(*1(G0) → H1(G0)), it
immediately follows that ∀G0H1(G0). More generally, within STT, it is obvious that
3= is unrestricted iff ∀G=−13=(G=−1).

7.5 Absolute generality in FJT

We have seen that STT can accommodate absolute generality. So, if we read FJT as a
(misleadingly formulated) notational variant of STT⊲, then FJT can equally accom-
modate absolute generality. But, as we will now show, FJT cannot accommodate
absolute generality if it is taken at face-value.

To establish this, we will assume in what follows that FJT is to be taken at
face-value, so that 32(H1) and 32(G0) apply the very same type 2 property to H1

and G0. (That assumption will remain in force until we explicitly lift it in §7.7.)
So understood, FJT allows type 2 properties to serve as domains containing both
objects and type 1 properties. In fact, FJT delivers a domain,*2, which contains all
type 1 properties and all objects, i.e. such that:54

53 This explication has an obvious shortcoming: it employs unrestricted quantification itself, in
talking about ‘absolutely any counterexamples’. However, this shortcoming is sharedby every account
of unrestricted quantification. Moreover, anyonewhoalreadyunderstandsunrestricted quantification
should agree with Florio and Jones’ explication.

54 Via the FJT-Comprehension instance: ∃I2(∀G1(I2(G1) ↔ G1 = G1) ∧ ∀G0(I2(G0) ↔ G0 = G0)).

27

∀G1*2(G1) ∧ ∀G0*2(G0)

But now first-order quantification becomes a form of restricted quantification: in a
clear sense, *1 is a restriction of *2, since *2 contains everything in *1, and more
besides.55

The point here is that FJT does treat objects and type 1 properties as a species
of a single genus. Indeed, for each = > 0, we can think of Thing= as the property
*= such that

∧
<<= ∀G<*=(G<). So in FJT, it makes sense, and is true, to say that

first-order quantifiers quantify over some things but not others.56
Again, we can make the same point in terms of Florio and Jones’ idea that

3= is unrestricted iff there are absolutely no counterexamples to any universal
generalization which is true over 3= . Applied to FJT, this does not quite yield
a simple definition of unrestrictedness,57 but it does yield a schematic necessary
condition for unrestrictedness: if 3= is unrestricted, and H< is true of everything in
3= that it can be meaningfully applied to, then H< is true of absolutely everything
it can be meaningfully applied to. Formalizing this intuitive idea, we obtain the
following, for all <, = > 0:

(2) 3= is unrestricted→
∀H<(∧8<min(<,=) ∀G 8(3=(G 8) → H<(G 8)) → ∧

8<< ∀G 8H<(G 8))

This makes *1 restricted, since FJT yields an �2 which applies to every object but
to no type 1 property, i.e. such that:58

∀G1¬�2(G1) ∧ ∀G0�2(G0)

Clearly∀G0(*1(G0) → �2(G0)), but¬∀G1�2(G1); so*1 is restricted by (2).59 Asimilar
argument shows that every domain of every type is restricted in FJT.60 (And the
same style of argument shows that no domain is unrestricted in CTT.)61

7.6 Florio and Jones on (R=U)

Our argument that every domain is restricted in FJT was based on Florio and Jones’
own explication of unrestrictedness. But they thought that FJT could accommodate
absolute generality. In this subsection, we will lay out their reasoning, and explain
why it was mistaken.

55 Formally: ∀G0(*1(G0) → *2(G0)), but ∃H1(*2(H1) ∧ ∀G0(*1(G0) → G0 . H1)).
56 Krämer (2017) presents a very similar argument, but directed against CTT rather than FJT.
57 This is because we can ask whether 3= is <-unrestricted for any < > 0; see (4), below.
58 Via the FJT-Comprehension Instance: ∃I2(∀G0(I2(G0) ↔ G0 = G0) ∧ ∀G1(I2(G1) ↔ G1 ≠ G1)).
59 This informal argument crucially assumes that FJT is taken at face value. Take the idea that ‘H2 is

true of everything in 31 that it can meaningfully be applied to’ can be glossed in FJT as ∀G0(31(G0) →
H2(G0)). Under interpretation into STT⊲, this formula becomes ∀G0(31(G0) → ∀I1(H2 ⊲ I1 → I1(G0))).
This no longer says anything about whether H2 itself is true of everything in 31.

60 Assuming that the type hierarchy does not have a terminal level.
61 When CTT is taken at face value, and again assuming that the type hierarchy does not have a

terminal level. In detail: first, we observe that if 3�+1 is unrestricted, then ∀H�+1(∀G(3�+1(G) →
H�+1(G)) → ∀G�H�+1(G�)), for all ≤ min(�, �). Via CTT-Comprehension, we obtain an ��+2

such that ∀G�+1(��+2(G�+1) ↔ ∃G� G�+1 ≡ G�). Then any 3�+1 is restricted, since ∀G�(3�+1(G�) →
��+2(G�)) but ¬∀G�+1��+2(G�+1).

28

Alongside their explication of unrestrictedness, Florio and Jones (2021: 51) intro-
duce a further notion: a domain isRussellian for a generalization∀E�E iff it coincides
with the range of significance of the predicate �, i.e. the range of things that � can be
meaningfully applied to. They then propose (2021: 51–3):

(R=U) A domain is Russellian iff it is unrestricted.

Here is the idea behind (R=U): a counterexample to ∀E�E would be something of
which � is false; but � does not say anything (whether true or false) of the things
which fall outside of its range of significance; so if ∀E�E is true over 3, and 3 is
Russellian for ∀E�E, then there cannot be any counterexamples to ∀E�E; so 3 is
unrestricted for ∀E�E.

Florio and Jones (2021: 57–8) attempt to use (R=U) as follows. The domain *1

is Russellian for the generalization ∀G001(G0): after all, type 1 terms express type
1 properties, and type 1 properties apply meaningfully only to objects.62 So if we
read ∀G001(G0) as a quantification over *1, then by (R=U) it is unrestricted. Whilst
*1 is a strict sub-domain of*2, none of the extra entities in*2 fall within 01’s range
of significance.

Our basic problemwith (R=U) is quite simple: there is a fundamental mismatch
between the R and the U.Unrestrictedness is normally understood in absolute terms:
either a domain is absolutely unrestricted, or it is not. By contrast, Florio and
Jones’s notion of Russellianness is a relative matter: a domain is not just Russellian
full stop; it is only ever Russellian for a generalization ∀E�E. This basic problem can
be overcome in STT, but not in FJT.

In STT, a property 3= can (meaningfully) be a domain for, and only for, gen-
eralizations of the form ∀G=−1H=(G=−1). After all, if we attempt to relativize the
generalization ∀G 8H<(G 8) to 3= , obtaining ∀G 8(3=(G 8) → H<(G 8)), then the result is
grammatical in STT iff = = < = 8 + 1. Consequently, the relativity involved in
Russellianness can be safely ignored: it would not even make sense to say that 3= is
Russellian for ∀G<−1H<(G<−1) when = ≠ <. Indeed, since the range of significance
of any type = property in STT is always exactly the type =−1 entities, we can say
that 3= is Russellian iffdf ∀G=−13=(G=−1). Using (1) from §7.4, we can then prove
(R=U) for STT.

In FJT, by contrast, a property 3= can (meaningfully) be a domain for gen-
eralizations ∀G 8H<(G 8) with = ≠ <, so we cannot simply ignore the relativity in
Russellianess. Let us, then, try to accommodate it. Officially, a domain is supposed
to be Russellian for a generalization. However, since the range of significance of any
type < property in FJT is always exactly the type : < < entities, all that really
matters is the type of the predicate used in the generalization. This leads to an
explicitly relativized notion of Russellianness as follows:

(3) 3= is <-Russellian iffdf all and only the type : < < entities have 3=
i.e.

(∧
:<< ∀H:

∨
8<=(∃G 8 ≡ H:)3=(G 8)

)
∧

(∧
8<= ∀G 8(3=(G 8) →

∨
:<< ∃H: G 8 ≡ H:)

)
62 This explains why Florio and Jones abandoned Linnebo and Rayo’s CTT, in favour of a theory

which invalidates Type-Raising: in CTT, every type of entity can be applied to every type of entity
(using � if necessary), and so the range of significance of 01 includes all entities of all types.

29

The first conjunct captures the idea that every type : < < entity has 3= ; it says that
every type : < < entity is an entity in 3= . The second conjunct captures the idea
that only the type : < < entities have 3= ; it says that every (type 8 < =) entity in
3= is a type : < < entity.63 This definition allows us (meaningfully) to ask whether
3= is <-Russellian, for any = and <. Furthermore, if = < <, then 3= is not <-
Russellian. In particular,*1 is not 2-Russellian. However,*1 is 1-Russellian. So, in
FJT, Russellianness is significantly relativized.

To make sense of (R=U) in FJT, then, Florio and Jones must relativize the notion
of unrestrictedness, so that it matches the relativity in Russellianness. Tacitly, they do
exactly this, describing domains as unrestricted for certain generalizations (2021:
e.g. 52–3). Florio and Jones do not define this relative sense of ‘unrestricted’, but we
can easily provide a definition on their behalf. To say that 3= is unrestricted with
regard to type < is, presumably, to say this: if H< is true of everything in 3= that
it can be meaningfully applied to, then it is true of absolutely everything it can be
meaningfully applied to. Formalizing this, we obtain the following, for all<, = > 0:

(4) 3= is <-unrestricted iffdf
∀H<(∧8<min(<,=) ∀G 8(3=(G 8) → H<(G 8)) → ∧

8<< ∀G 8H<(G 8))

Indeed, this just turns (2), which is a schematic necessary condition on unrelativized
unrestrictedness, into a definition of relativized <-unrestrictedness.

We can now understand (R=U) thus: a domain is <-Russellian iff it is <-
unrestricted. But so understood, (R=U) is false: *2 is 1-unrestricted but not 1-
Russellian, with *2 as given in §7.5. Moreover, we do not need any principle like
(R=U) to determine whether a given domain is <-unrestricted; we can just use
definition (4). For example, it is clear from (4) that *1 is 1-unrestricted but 2-
restricted. More generally, 3= is <-unrestricted iff both = ≥ < and

∧
8<< ∀G 83=(G 8).

The only remaining question is whether the salient notion of unrestrictedness in
FJT is the absolute notion governed by (2), or the relative notion defined by (4). We
think it is completely clear that the relevant notion is the absolute one. After all, the
debate here is about absolute generality. It would be false advertising to enter that
debate, promising to vindicate unrestricted quantification, and then only deliver
relatively unrestricted quantification. To emphasise this point, return to the example
of *1: evidently, *1 is 1-unrestricted but 2-restricted, as defined by (4). Precisely
because *1 is 2-restricted, though, there is a clear sense in which *1 is restricted
simpliciter. In particular, with �2 as given at the end of §7.5, everything which is*1

is �2, i.e. ∀G0(*1(G0) → �2(G0)), but some entities are not �2, in that ∃G1¬�2(G1).
Indeed, this is exactly where Florio and Jones (2021: 57) go wrong. They

recognise that you can find a type 1 entity not in*1, but say: ‘it does not entail that
63 Florio and Jones (2021: 56fn.15) have some doubts about whether≡ expresses cross-type identity

in FJT. If these doubts are justified, then our formal definition of <-Russellian will have to be revised
as follows:
(3∗) 3= is <-Russellian∗ iffdf

(∧
:<< ∀H:3=(H:)

)
∧

(∧
<≤:<= ∀H:¬3=(H:)

)
If = < <, then ‘3= is <-Russellian∗’ is ill-formed rather than false. Nevertheless, our key points
about Russellianness still go through. First, Russellianness∗ is significantly relativized, since �2 is
1-Russellian∗ but not 2-Russellian∗, with �2 as given at the end of §7.5. Second, (R=U) is false, since
*2 is 1-unrestricted but not 1-Russellian∗, with*2 as given in §7.5.

30

� is meaningfully predicable of that entity’, where ∀G0�(G0) is the generalization
under consideration. However, FJT has precisely that entailment when �’s type is
> 1, as in the case of � = �2.

7.7 FJT: the case for ambiguity

Itmight be helpful to end our discussion of FJT by summarizing our case for reading
it as a mere notational variant of STT⊲.

First. We see no reason not to read FJT in this way. Linnebo and Rayo could not
read CTT$ as a notational variant of STT↑, because they wanted to extend CTT$

into the transfinite. But FJT is as finitary as STT↑.
Second. If we take FJT at face-value, then it is unclear how we should interpret

it. Florio and Jones explicitly intended to give FJT a conceptual semantics, but we
know of no version of that semantics which could justify FJT’s type-restrictions,
taken at face-value.

Third. If we take FJT at face-value, then it cannot accommodate absolute gen-
erality. However, if we read FJT as a notational variant of STT⊲, then it can supply
absolutely unrestricted domains.

8 Conclusion
In this paper, we have argued for four main claims:

(a) CTT cannot be used to close the gap between an ideological hierarchy of types
and an ontological hierarchy of sets (§§2–3).

(b) CTT’s type-restrictions are superfluous, on any semantics (§4).
(c) STT’s type-restrictions can be justified by a Fregean semantics, which also

provides us with a way to resist Linnebo and Rayo’s Semantic Argument in
favour of CTT (§§5–6).

(d) FJT is best understood as a misleading formulation of STT⊲ (§7).

We start with (a). The Sets-from-Types Theorem allows us to simulate Zr within
CTT. But deep mathematical differences remain between Zr and and Zr(�), render-
ingZr(�) unsuitable as a framework formathematical foundations. Furthermore, the
Sets-from-Types Theorem cannot allay any ontological worries wemight have about
set theory: CTT’s type-indices are supplied externally, and so the Sets-from-Types
Theorem merely shunts our ontological worries into the metalanguage.

Next is (b). CTT is a remarkably relaxed type theory: it allows us to apply
every type of entity to every type of entity. But it still retains the constraint that
all of its variables are typed and, in CTT, that type-restriction is superfluous. Once
every type of entity can be applied to every type of entity, there can be no barrier to
introducing untyped variables.

We come now to (c). The strict type-restrictions imposed by STT can be jus-
tified by the Fregean semantics. On this semantics, different types of term play
fundamentally different types of semantic role, so that they cannot be meaningfully

31

intersubstituted. Moreover, this semantics yields a principled reason to rejectNaïve
Optimism, a crucial premise in Linnebo and Rayo’s Semantic Argument.

Weendwith (d). Florio and Jones’ FJTwasmeant tobe a partially cumulative type
theory, but we argue it is best understood as a notational variant of STT⊲: taking
FJT at face-value leaves it unable to accommodate absolute generality; whereas
STT⊲—which is definitionally equivalent to FJT—provides absolutely unrestricted
domains of quantification.

A Elementary facts about CTT
The remainder of this paper comprises technical appendices, covering the formal
resultsmentioned in themain text. Wewill startwith some elementary observations
about CTT. As mentioned in §1.2, for each ordinal �, we have a theory CTT�.64
Recall that we have explicitly defined ≡ and �, for any types and � and where
� = max(, �) + 1:

0 ≡ 1� iffdf ∀G�(G�(0) ↔ G�(1�))
0 � 1� iffdf (∃G� ≡ 1�)G�(0)

In what follows, we will frequently invoke the following simple facts about ≡ and
�; crudely, they allow us to move seamlessly between different type-levels:

Lemma 1: If ≤ � and � + 1 < �, then CTT� proves: ∀0∃1� 0 ≡ 1�

Proof. By∀I�+1
�+1, we have∀G�+1(G�+1(0) ↔ G�+1(0)), i.e. 0 ≡ 0; so∀0∃1� 0 ≡ 1�

by ∃I� followed by ∀I �

Lemma 2: For any), and any , �, � with max(, �, �) + 2 < �, CTT� proves:

(1) if 0 ≡ 1� and)(0), then)(1�), when this is well-formed
(2) if 0 ≡ 1� ≡ 2�, then 0 ≡ 2�
(3) if 0 ≡ 1� and 0 � 2�, then 1� � 2�
(4) if 0 ≡ 1� and 2� � 0, then 2� � 1�

Proof. (1) Suppose 0 ≡ 1� and)(0). Let � = max(, �); by CTT-Comprehension
there is some 2�+1 such that ∀G�(2�+1(G�) ↔)(G�)). Since)(0), by ∀E�

 we have
that 2�+1(0). Since 0 ≡ 1�, i.e. ∀I�+1(I�+1(0) ↔ I�+1(1�)), by ∀E�+1

�+1 we have that
2�+1(1�). Now)(1�) by ∀E�

�.
(2)–(4) We leave these to the reader. They are not completely immediate

consequences of (1), since the definitions of ≡ and � are typically ambiguous. �

Lemma 3: If max(, �) + 2 < �, then CTT� proves: 0 � 1�+1 ↔ (∃G� ≡ 0)1�+1(G�)
64 Throughout the appendices, we will assume that all type-indices are ordinals; nothing turns on

this, but it makes the technicalities more familiar.

32

Proof. By Type-Founded and Lemmas 1–2. �

It is worth emphasising that Type-Founded and Type-Basis are independent from
CTT’s other axioms. To show this, we begin by building an ill-founded set-theoretic
structure,A. Let a = {∅, a}; now define:

�1 ≔ a �=+1 ≔ ℘(�=) � ≔

⋃
=<$

�=

So �2 = {∅, {∅}, {a}, a}. Let A be the structure whose domain is � and which
interprets ∈ verbatim; evidently,A is ill-founded. Using a slight tweak of the class
semantics of §4.2, we now create a model,ℳ, of CTT$ without Type-Founded. We
start by defining a ranking function � : � −→ N onA as follows:

�(∅) = 0 �(a) = 1 �(2) = = iff 2 ∈ �= \ �=−1

So �({∅}) = 2. Now we stipulate thatℳ’s type = entities are all those 2 ∈ � such
that �(2) ≤ =, and applications are stipulated to hold as follows, for all < < = and
all 1, 2 ∈ �:

ℳ |= 2=(1<) iff 1 ∈ 2

It is easy to confirm that ℳ models CTT$ without Type-Founded. But, by con-
struction, 2< ≡ 2= whenever min(<, =) ≥ �(2). So a2(a1) with a2 ≡ a1, and hence
a1 � a1. So ℳ violates Type-Founded. Admittedly, Type-Basis holds in ℳ, but
we can violate it with a similar construction: start with a Quine atom b = {b}; let
�0 = b and �=+1 = ℘(�=); define �(2) = = iff 2 ∈ �= \ �=−1; and note that b0 � b0.

B Obtaining Zr in CTTp

In §2, we stated the Sets-from-Types Theorem. In this appendix, we prove that
result. We also introduce the interpreting theory, CTTp, and the interpreted theory,
Zr, and discuss how CTTp deals with Replacement.

B.1 The theory Zr

The set theorywhichwe simulate is Zr. We can think of Zr as arising by adding to Z
the principle that the sets are arranged in well-ordered levels; Zr is therefore strictly
stronger than Z and strictly weaker than ZF.65 We follow Button’s (forthcoming)’s
formulation of Zr, starting with a core of definitions:

Definition 4: Say that ℎ is a history, written Hist(ℎ), iff (∀0 ∈ ℎ)∀G(G ∈ 0 ↔ (∃2 ∈
ℎ)G ⊆ 2 ∈ 0). Say that B is a level, written Lev(B), iff ∃ℎ(Hist(ℎ) ∧ ∀G(G ∈ B ↔ ∃2(G ⊆
2 ∈ ℎ))).66
65 Zr is equivalent to Potter’s (2004) theory Z; this is strictly stronger than Zermelo’s Z.
66 Notation: we let ‘G ⊆ 2 ∈ ℎ’ abbreviate ‘(G ⊆ 2 ∧ 2 ∈ ℎ)’; similarly for other infix predicates.

33

Using these definitions, we can consider some axioms:

Extensionality ∀0∀1(∀G(G ∈ 0 ↔ G ∈ 1) → 0 = 1)
Separation ∀0∃1∀G(G ∈ 1 ↔ ()(G) ∧ G ∈ 0)), for every) not containing 1

Stratification ∀0(∃B ⊇ 0)Lev(B)
Endless ∀0∃1 0 ∈ 1
Infinity ∃0(∃G G ∈ 0 ∧ (∀G ∈ 0)∃H(G ∈ H ∈ 0))

The theory LT has, as axioms, Extensionality, all instances of Separation, and Strati-
fication, which serves as a principle of foundation. The theory Zr adds Endless and
Infinity to LT. In what follows, these next two results will be extremely useful:67

Lemma 5: Extensionality + Separation proves: if Lev(B), then B = {G : ∃A(Lev(A)∧G ⊆
A ∈ B)}.

Theorem 6: Extensionality + Separation proves: the levels are well-ordered by ∈,
i.e.:

(1) ∃B(Lev(B) ∧)(B)) → ∃B(Lev(B) ∧)(B) ∧ ¬(∃A ∈ B)(Lev(A) ∧)(A)))
(2) ∀B∀C((Lev(B) ∧ Lev(C)) → (B ∈ C ∨ B = C ∨ C ∈ B))

This last result allows us to define the rank of 0, written rank(0), within LT, in terms
of the ∈-least level with 0 as a subset.

B.2 The theory CTTp

The theory CTTp extends CTT with two new principles.68 First, we add a version
of ‘extensionality’, for all ≤ �:

Type-Ext. ∀0+1∀1�+1([∀G(0+1(G) → 1�+1(G)) ∧
∀G�(1�+1(G�) → (∃H ≡ G�)0+1(H))] → 0+1 ≡ 1�+1)

Second, to achieve ‘purity’, we add an axiom stating that there is exactly one object:

Type-Purity. ∀G0∀H0 G0 = H0

Note that, modulo CTT’s other axioms, Type-Founded follows from Type-Ext and
Type-Purity.

To begin our simulation of Zr within CTTp, we will show that CTT�p proves
Extensionality(�) and Separation(�).

Lemma 7: CTT�p ` Extensionality(�), whenever � + 2 < �.

Proof. Suppose � is a limit (the proof is easier when � is a successor). Without loss
of generality, fix ≤ � < � and suppose ∀G�(G� � 0 ↔ G� � 1�).

67 See Button (forthcoming: §3) for proofs.
68 Compare these with Degen and Johannsen (2000: 149 Ext, 153 Nullity).

34

Using Lemma 1, find 0+1 ≡ 0 and 1�+1 ≡ 1�. Suppose 0+1(G). So G � 0+1

by Lemma 3; by Lemma 1 there is G� ≡ G, and G� � 0 by Lemma 2; so G� � 1�,
and now 1�+1(G) by Lemmas 2 and Lemma 3. Similar reasoning shows: if 1�+1(G�)
then (∃H ≡ G�)0+1(H). By Type-Ext, 0+1 ≡ 1�+1; hence 0 ≡ 1� by Lemma 2.
Generalizing, for any , � < �:

∀G�(G� � 0 ↔ G� � 1�) → 0 ≡ 1�

Now Extensionality(�) holds, using Limit� twice. �

Lemma 8: CTT�p ` Separation(�), whenever � + 2 < �.

Proof. Suppose � is a limit (the proof is easier when � is a successor). Fix < � and
) such that)(G�) is well-formed. Fix 0 and find 0+1 ≡ 0 by Lemma 1. Using
CTT-Comprehension, fix 1+1 such that:

∀G(1+1(G) ↔ (∀G� ≡ G)()(G�) ∧ G� � 0+1))

Suppose I� � 1+1; by Lemma 3 there is I ≡ I� such that 1+1(I); so using
the biconditional,)(I�) ∧ I� � 0+1. Conversely, suppose)(I�) ∧ I� � 0+1; by
Type-Founded there is I ≡ I�, and (∀G� ≡ I)()(G�) ∧ G� � 0+1) by Lemma 2; so
1+1(I), and I� � 1+1 byLemma3. Summarizing: I� � 1+1 ↔ ()(I�)∧I� � 0+1).
By Lemma 1 there is 1� ≡ 1+1. Generalizing and using Lemma 2, for any < �:

∀0∃1�∀I�(I� � 1� ↔ ()(I�) ∧ I� � 0))

Now Separation(�) follows by the Limit�-rule. �

Consequently, CTT�p proves Lemma 5(�) and Theorem 6(�). The latter result states
that the Lev(�)s are well-ordered by �. Here, ‘Lev(�)’ is the obvious translation of the
definition of ‘Lev’; we also call these levels(�). In what follows, we also write things
like G� ⊆(�) H� for (∀E� � G�)E� � H�.

Our next goal is to show that CTT�p simulates our set-theoretic principle of
foundation, i.e. Stratification. We first need a small subsidiary lemma, which says
(roughly) that any subset of a low-typed entities is itself low-typed:

Lemma 9: CTT�p ` ∀0(∀1� ⊆(�) 0)∃G 1� ≡ G, whenever � + 2 < �.

Proof. Suppose and � are limits (the proof is easier otherwise). Let � < �, and
fix 1� ⊆(�) 0; it suffices to show that ∃G 1� ≡ G, since we can then use Limit� to
establish the result.

If � ≤ , Lemma 1 immediately tells us that ∃G 1� ≡ G. Suppose instead
that � > . Fix � < , and suppose there is some 0�+1 ≡ 0. Using Lemma 1, let
1�+1 ≡ 1�. By CTT-Comprehension, there is 2�+1 such that:

∀E�(2�+1(E�) ↔ 1�+1(E�))

Using Lemmas 1–3: if 1�+1(E�), then E� � 0�+1 since 1� ⊆(�) 0�+1, so that there
is H� ≡ E�; now 1�+1(H�), so that 2�+1(H�). Generalizing, ∀E�(1�+1(E�) → (∃H� ≡

35

E�)2�+1(H�)). By Type-Ext, 2�+1 ≡ 1�+1 ≡ 1�. Summarizing all this, we have
established the following conditional, for each � < :

∃G�+1 0 ≡ G�+1 → ∃G�+1 1� ≡ G�+1

Now, for reductio, suppose that ∀G 1� . G. Then ∀G�+1 1� . G�+1 for all � < .
So, by the relevant conditional, ∀G�+1 0 . G�+1. By the Limit-rule, ∀G 0 . G,
a contradiction. Discharging the reductio, ∃G 1� ≡ G, as required. �

Lemma 10: CTT�p ` Stratification(�), whenever � + 2 < �.

Proof. We will show that, for each � ≤ �, CTT�p proves ∀0�(∃B� ⊇(�) 0�)Lev(�)(B�).
This is an induction on � in the metatheory, where our induction hypothesis is that
for each < � we have established ∀0(∃B ⊇(�) 0)Lev(�)(B)

Induction case when � = 0. By Type-Founded, ∀G� G� /� 00. So Hist�(00) and
Lev(�)(00), vacuously. So ∀00(∃B0 ⊇(�) 00)Lev(�)(B0).

Induction case when � is a limit. Applying Lemmas 1–2 to our induction hypoth-
esis, we have ∀0(∃B� ⊇(�) 0)Lev(�)(B�). Now ∀0�(∃B� ⊇(�) 0�)Lev(�)(B�), by the
Limit�-rule.

Induction case when � = + 1. Using CTT-Comprehension twice, find ℎ� and B�
such that

∀G(ℎ�(G) ↔ Lev�(G)) (1)
∀G B�(G) (2)

Combining these with the induction hypothesis, we obtain:

∀G(B�(G) ↔ (∃2 ⊇(�) G)ℎ�(2))

Hence, by Lemmas 1–3 and 9:

∀G�(G� � B� ↔ ∃2�(G� ⊆(�) 2� � ℎ�)) (3)

Next, applying ∀E� and ∀I to Lemma 5(�) gives:

∀0(Lev(�)(0) → ∀G�(G� � 0 ↔ ∃2�(Lev(�)(2�) ∧ G� ⊆(�) 2� � 0)))

So, by (1) and Lemmas 1–3:

(∀0� � ℎ�)∀G�(G� � 0� ↔ (∃2� � ℎ�)G� ⊆(�) 2� � 0�)

i.e. ℎ� is a history(�). So B� is a level(�), by (3). Moreover, for any 0�, we have
0� ⊆(�) B� by (2) and Lemmas 1–3. So ∀0�(∃B� ⊇(�) 0)Lev(�)(B�). �

Wehave now established LT(�). To obtain Zr(�), we need just two straightforward re-
sults, which we leave to the reader (they hold using CTT-Comprehension, Lemmas
1–3, and the Limit-rule).

Lemma 11: CTT�p ` Endless(�), whenever � + 2 < � and � is a limit

36

Lemma 12: CTT�p ` Infinity(�), whenever � > $ and � + 2 < �

Assembling Lemmas 7–12, we have the Sets-from-Types Theorem:

Theorem 13: CTT�p ` Zr(�) for any limit � > $ with � + 2 < �.

B.3 Replacement, and semantic considerations

We mentioned that Zr sits strictly between Z and ZF. Specifically, Zr does not
include Replacement. To settle the status of Replacement with regard to CTTp,69
we will move from proof theory to semantics, linking models of CTTp with models
of LT. (Recall that LT is the subtheory of Zr whose axioms are Extensionality,
Separation and Stratification.)

In considering models of LT, we restrict our attention to transitive models.70
Recall that a structure A in the signature of set theory is transitive iff both (∀G ∈
�)G ⊆ �, and (∀0 ∈ �)(∀1 ∈ �)(0 ∈ 1 ↔ 0 ∈A 1). So membership and subsethood
are absolute for transitive models. Also recall that being a (von Neumann) ordinal
is absolute for transitive models,71 and so is the notion of a set’s (ordinal) rank.
(Recall from §B.1 that we can define a set’s rank within LT, and hence within Zr.)
WhereA is a transitive model of LT, let Ord(A) be the least ordinal not in � itself.

Whilst we consider only transitive models of LT, we will entertain non-standard
models. A transitive modelA |= LT is standard iff for any < Ord(A), every subset
of {G ∈ � : rank(G) ≤ } is itself inA.

Given anymodelℳ |= CTT�p with �+2 < �, we can easily turn it into a transitive
set-theoretic model, L�ℳ, as follows: let L�ℳ’s domain comprise all the type �
entities fromℳ; and let L�ℳ |= 0 ∈ 1 iffℳ |= 0 � 1.

Lemma 14: When � + 2 < �: ifℳ |= CTT�p, then L�ℳ is isomorphic to a unique
transitive model of LT.

Proof. By Lemmas 7–10, L�ℳ |= LT. The type indices are well-ordered. By the
Limit-rule, Type-Founded, Type-Purity and Lemma 7, L�ℳ’s membership relation
is extensional and well-founded. Now use Mostowski’s Collapsing Lemma. �

Wecan alsomove in the opposite direction, from transitivemodels of LT tomodels of
CTTp. In effect, we follow the class-semantics of §4.2, but tweaked to banurelements
and to allow for non-standard models of CTTp, where a model of CTTp is standard
iff for any entities of any type (other than the greatest) in the model, some type
+1 property in the model applies exactly to those entities.72 Still, the basic plan is
69 This addresses Linnebo and Rayo (2012: 289 n.28).
70 All the set-theoretic facts needed in this ensuing discussion of transitive models can be found in

Button and Walsh (2018: ch.8). Notation: We use calligraphic fonts for structures, and italics for their
underlying domains; so � is the domain of A. The definition of a transitive model is given in the
model theory; so we use ‘∈’, here, in the model theory, and use ‘∈A ’ forA’s interpretation of ∈’

71 Whenever we speak of ordinals in this subsection, we mean von Neumann ordinals.
72 See Linnebo and Rayo (2012: 279n.13).

37

simple: start with a transitive model of LT; treat entities of different rank as being
of different types; and read membership as ‘application’.

Unfortunately, there is a small wrinkle in implementing this plan, thanks to an
irritatingmismatch between the types of CTTp and a set’s rank. To illustrate: CTTp’s
Limit-rule means that every type $ entity is of some finite type, but the ordinal $
has rank $. To deal with this wrinkle, we define a function which (in effect) tells us
how to map from ranks to types:

∗ =

{
 if < $

 + 1 if ≥ $

We can now implement our plan. WhereA is a transitivemodel of LT, defineCA as
follows. Its denizens are just the members of �, and if rank(G) = then G is treated
as a type � entity for all ∗ ≤ � < Ord(A)∗. Then, we stipulate that CA |= H(G) iff
A |= G ∈ H.

Lemma 15: Let A |= LT be transitive. Then CA |= CTTOrd(A)∗
p . Moreover, A is

standard iff CA is standard.

Proof sketch. The quantifier-rules and Limit-rules are obviously sound. When ≡
and � are well-defined CTTOrd(A)∗-expressions,73 distinct entities 0 and 1� are
distinguished by {0}+1, so ≡CA is identity and �CA is membership. Type-Base
and Type-Purity now hold, as A has exactly one rank-0 object, and it is empty.
Type-Ext follows from Extensionality and simple reasoning about ranks. For CTT-
Comprehension, fix) and with + 1 < Ord(A)∗; we will show that:

CA |= ∃I+1∀G(I+1(G) ↔)(G))

Let �∗ = + 1; note that � ∈ �, as A is transitive. Fix B ∈ � such that A thinks
that B is the ∈-least level with � as a subset. By Separation on B inA, there is some
2 ∈ � of rank ≤ � which serves as a witnessing value for I+1 when regarded as an
entity of type + 1. Finally, the remark about standardness is immediate from the
construction. �

We now have the means to move between transitive models of LT and models of
CTTp. Recalling that LT is strictly weaker than ZF, we can now settle the status of
Replacement, in CTTp, by using some well-known facts concerning models of ZF:

Theorem 16: Fix � > $ such that � + 2 < �:

(1) If � is strongly inaccessible, every model of CTT�p satisfies ZF(�).
(2) If � is not strongly inaccessible, there are models of CTT�p which violate
ZF(�), and any model of CTT�p which satisfies ZF(�) is non-standard.

Proof. (1) Let � be strongly inaccessible with ℳ |= CTT�p. Using Theorem
13 and Lemma 14, obtain a transitive model A � L�ℳ |= Zr. To show that

73 Recall from footnote 10 that G � H� is a CTT�-formula iff max(, �) + 2 < �.

38

ℳ |= ZF(�), it suffices to show that A |= Replacement. So: fix 0 ∈ � and suppose
A |= (∀G ∈ 0)∃!H)(G, H). Working outsideA, let

� = sup{rank(2) : A |= (∃G ∈ 0))(G, 2)}

Since A is transitive and � is strongly inaccessible, � ∈ �. So also {2 : A |= (∃G ∈
0))(G, 2)} ∈ �, by Separation inA on whatA thinks is a level with � as a subset.

(2) Here are two general facts about the + hierarchy:

+� |= ZF iff � is strongly inaccessible
+� |= LT iff � > 0

So suppose � > $ is not strongly inaccessible. Fix � such that �∗ ≥ �. Now, +� is a
transitive model of LT and Ord(+�) = �. Using Lemma 15, obtain C+� |= CTT�p. By
construction, L�C+� = +�. Since +� 2 Replacement, also C+� 2 Replacement(�).

For the second clause: supposeℳ |= CTT�p andℳ |= ZF(�), with � not strongly
inaccessible. Use Lemma 14 to obtain a unique transitive model A � L�ℳ. Since
A |= ZF but Ord(A) is not strongly inaccessible,A is non-standard. �

C Definitional equivalence for CTT$

In §5.4, we stated that CTT$ is definitionally equivalent to STT↑. In this appendix,
we define STT↑, and prove the equivalence.

STT↑ augments STT with a new function symbol, ↑, for each =, which takes a
type = entity as input and outputs a type =+1 entity.74 So, for example, 12(↑00)
and 25(↑↑12) are well-formed. STT↑ retains STT-Comprehension; this holds for
formulas containing ↑. STT↑ then has axioms ensuring that ↑ is injective, preserves
property-possession, and delivers well-foundedness:

Up-Inject. ∀G=∀H=(↑G= = ↑H= → G= = H=)
Up-Possess. ∀G=∀H=+1(↑H=+1(↑G=) ↔ H=+1(G=))
Up-Founded. ∀G=+1∀H=+1(↑H=+1(G=+1) → ∃I= G=+1 = ↑I=)
Up-Base. ∀G0∀H0¬↑H0(G0)

For readability, where < > =, we write ↑<0= for the result of applying < − =
instances of ↑ to 0= , yielding a type< entity; so ↑400 abbreviates ↑↑↑↑00, and 25(↑412)
abbreviates 25(↑↑12). Simple induction, which we leave to the reader, shows that
STT↑ proves generalizations of our new axioms; specifically, for each < > =:

• ∀G=∀H=(↑<G= = ↑<H= → G= = H=)
• ∀G=∀H=+1(↑<+1H

=+1(↑<G=) ↔ H=+1(G=))
• ∀G<∀H=+1(↑<+1H

=+1(G<) → ∃I= G< = ↑<I=)
• ∀G=∀H0¬↑=+1H

0(G=).
74 As with the signs =, ≡ or �, we are using the same symbol (in a typically ambiguous way) for

each type level.

39

To prove that STT↑ and CTT$ are definitionally equivalent (Theorem 23), we first
define an interpretation, �, from CTT$ to STT↑. This preserves the interpretation of
all logical symbols, including =; its only non-trivial action is as follows:75

[H=(G<)]� ≔ H=(↑=−1G
<)

Observe that if = = < + 1, then [H=(G<)]� is just H=(G<). Here is a very simple fact
about the relationship between ↑ and the interpretations of � and ≡, which holds
just by unpacking some definitions (the proof is left to the reader):

Lemma 17: Where 8 = max(<, =), STT↑ proves:

(1) [G< ≡ H=]� ↔ ↑8G< = ↑8H=
(2) [G< � H=]� ↔ ↑8+1H

=(↑8G<)

We now have one substantial result:

Lemma 18: The �-interpretations of ∀E=< and ∀I=< are admissible in STT↑

Proof. We start with ∀E=< . Suppose that both)(G=) and)(0<) are well-formed in
CTT$. Working in STT↑, suppose ∀G=)�(G=). If < = =, then)�(0<) follows by
ordinary ∀E in STT↑. So consider the case when < < =. The variable G= cannot
occur in any identity-claim, e.g. G= = 2= , since 0< = 2= is ill-formed in CTT$; so)
must have this kind of shape (illustratively):

#(G=(E 8), . . . , H:(G=), . . .)

with 8 < < < = < :; note that 8 < <, since)(0<) is well-formed in CTT$. Now)�

is:
#(G=(↑=−1E

8), . . . H:(↑:−1G
=), . . .)

Using STT↑’s rule ∀E= , we can infer)�(↑=0<), i.e.:

#(↑=0<(↑=−1E
8), . . . H:(↑:−1↑=0<), . . .)

Simplifying, and using generalized Up-Possess, we obtain:

#(0<(↑<−1E
8), . . . H:(↑:−10

<), . . .)

which is precisely)�(0<), as required.
The admissibility of ∀I=< under interpretation follows straightforwardly. Given

)�(1=), with 1= suitably arbitrary: infer ∀G=)�(G=) using STT↑’s rule ∀I= ; with
0< suitably arbitrary, infer)�(0<) using ∀I=< under interpretation; finally, infer
∀G<)�(G<) using STT↑’s rule ∀I< . �

It is now easy to prove that � is an interpretation:

Lemma 19: � : CTT$ −→ STT↑ is an interpretation.
75 So: [G= = H=]� ≔ G= = H= ; [) ∧ #]� ≔ ()� ∧ #�); [¬)]� ≔ ¬)� ; and [∀G=)]� ≔ ∀G=)� .

40

Proof. We simply check all inference rules and axioms. Lemma 18 deals with the
quantifier-rules, and no Limit-rules apply since we are considering CTT$.

CTT$-Comprehension. If)(G=) is an CTT$-formula, then)�(G=) is an STT↑-
formula; now use STT↑-Comprehension.

Type-Founded. Suppose [0< � 1=+1]� i.e. ↑8+11
=+1(↑80<) with 8 = max(<, = + 1)

by Lemma 17.2. By generalized Up-Founded, there is I= such that ↑80< = ↑8I= , i.e.
[0< ≡ I=]� by Lemma 17.1.

Type-Base. By generalized Up-Base, ¬↑=+1H
0(G=); so [G= /� H0]� by Lemma 17.2.

�

We now switch to working in CTT$. It will help if we allow ourselves the use of a
definite description operator, �, within CTT$. (This is harmless since, by standard
Russellian techniques, this can always be eliminated from any formula.)76 Now, by
Type-Raising in CTT$, for any type = and each G= there is a unique G=+1 such that
G= ≡ G=+1; we will denote this in CTT$ using ⇑G= , i.e. ⇑G= ≔ (�G=+1 . G= ≡ G=+1). As
before, we write ⇑=0< for the result of applying = −< instances of ⇑ to 0< , yielding
a type = entity. We now define an interpretation, �, from STT↑ to CTT$, with these
actions:77

[H=+1(G=)]� ≔ H=+1(G=)
[↑G=]� ≔ ⇑G=

Lemma 20: � : STT↑ −→ CTT$ is an interpretation.

Proof. CTT$-Comprehension immediately licenses STT↑-Comprehension. For Up-
Inject, suppose ⇑G= = ⇑H= , i.e. (�G=+1 . G= ≡ G=+1) = (�H=+1 . H= ≡ H=+1); so G= ≡ H=
by Lemma 2, and hence G= = H= . Similarly, Up-Possess holds by Lemma 2. And
Up-Founded and Up-Base hold via Type-Founded and Type-Base. �

It only remains to show that � and � together yield a definitional equivalence.

Lemma 21: CTT$ proves this scheme: [[H=(G<)]�]� ↔ H=(G<).

Proof. Note that [[H=(G<)]�]� iff [H=(↑=−1G
<)]� iff H=(⇑=−1G

<) iff H=(G<), using
Lemma 2 for the final biconditional. �

Lemma 22: STT↑ proves these schemes: [[H=+1(G=)]�]� ↔ H=+1(G=) and [[↑G=]�]� =
↑G= .

76 So we are relying on the fact that CTT$ augmented with this device is definitionally equivalent
to CTT$. Clearly, it is. Still, for details of how to handle function symbols more austerely, see e.g.
Button and Walsh (2018: §5.5, esp. fn.23).

77 And: [G= = H=]� ≔ G= = H= ; [) ∧ #]� ≔ ()� ∧ #�); [¬)]� ≔ ¬)� ; and [∀G=)]� ≔ ∀G=)� .

41

Proof. The first scheme is trivial. For the second:

[[↑G=]�]� = [⇑G=]� = (�G=+1 . G= ≡ G=+1)�

= (�G=+1 . ∀I=+2(I=+2(G=) ↔ I=+2(G=+1)))�

= (�G=+1 . ∀I=+2(I=+2(↑G=) ↔ I=+2(G=+1)))
= (�G=+1 . ↑G= = G=+1)
= ↑G=

�

Assembling Lemmas 19–22, we obtain:

Theorem 23: STT↑ and CTT$ are definitionally equivalent

D Definitional equivalence for FJT
In §7, we stated that FJT is definitionally equivalent to STT⊲. In this appendix, we
define STT⊲ and prove the equivalence.

The guiding idea is to simulate FJT by using a version of STT with this sort of
behaviour: for all types 1 < < < =, each type = entity 0= , projects downwards to
some type < entity ↓<0= ; we can then simulate an application 0=(G<−1) by instead
considering ↓<0=(G<−1). However, there is a small snag: we are treating ↓< as
functional; but, if we assume no version of extensionality, then we will have no
way to decide whether 02 should project downwards to 11 or 21, if 11 and 21 are
coextensional. The snag can be avoided by using a relational (rather than function)
version of downward-projection. What follows spells this out rigorously.

We define STT⊲ by augmenting STT as follows. For each = > 0, we have a
relational constant, ⊲, expressing the downward-projecting relation from a type
=+1 entity to a type = entity. So we write e.g. 44 ⊲ 33 or 11 ⊲ 00;78 when convenient,
we may write 33 ⊳ 44 or 00 ⊳ 11 instead. We introduce some useful abbreviations:

0= ≈ 1= iffdf ∀G=−1(0=(G=−1) ↔ 1=(G=−1)), when = > 0
0= H 1= iffdf ∀G=−1(0= ⊲ G=−1 ↔ 1= ⊲ G=−1), when = > 1
01 H 11 iffdf 0

1 = 01

So 0= ≈ 1= tells us that 0= and 1= are coextensive, and 0= H 1= tells us that 0= and 1=
project downwards to exactly the same entities. The special stipulation for 01 H 11 is
needed as STT⊲ has no relational constant ⊲ expressing a relation from a type 1 entity
to a type 0 entity, and sowill hold vacuously. We concatenate chains of conjunctions;
sowemaywrite e.g. 02⊳33⊲12 ≈ 22 in place of (33⊲02∧33⊲12∧12 ≈ 22). STT⊲ retains

78 As with the signs =, ≡ or �, we are using the same symbol (in a typically ambiguous way) for
each type level.

42

the STT-Comprehension scheme for type 1 entities, i.e. ∃I1∀G0(I1(G0) ↔)(G0)); but
for each = > 1, it has an augmented scheme:79

STT⊲-Comprehension. ∀H=(∃I=+1 ⊲ H=)∀G=(I=+1(G=) ↔)(G=)), for any formula)(G=)
not containing I=+1.

For each = > 0, STT⊲ also has these axioms:

Down∃. ∀I=+1∃G= I=+1 ⊲ G=

DownSim. ∀I=+1∀G=∀H=(G= ⊳ I=+1 ⊲ H= → G= ≈ H= H G=)
DownMax. ∀I=+1∀G=∀H=(I=+1 ⊲ G= ≈ H= H G= → I=+1 ⊲ H=)

So Down∃ says that all entities of types ≥ 2 project downwards; DownSim says that
if I=+1 projects to two entities G= and H= , then G= and H= apply and project to exactly
the same entities; and DownMax says that if I=+1 projects to some entity G= , then
I=+1 also projects to any H= which applies and projects to exactly the same entities
as G= . These axioms ensure that ⊲-chains are always equivalent, in a strong sense
which is brought out by these next two lemmas:

Lemma 24: STT⊲ proves this scheme (with = > 0). If 0=+1 ⊲ G= and 1=+1 ⊲ G= for some
G= , then 0=+1 H 1=+1.

Proof. Suppose 0=+1 ⊲ G= and 1=+1 ⊲ G= . If 0=+1 ⊲ H= , then G= ≈ H= H G= by DownSim,
so 1=+1 ⊲ H= by DownMax; similarly if 1=+1 ⊲ H= then 0=+1 ⊲ H= . �

Lemma 25: STT⊲ proves this scheme (with = > 0). Given any ⊲-chains:

0=+1 ⊲ 0= ⊲ 0=−1 ⊲ . . . ⊲ 01

1= ⊲ 1=−1 ⊲ . . . ⊲ 11

(1) If 0=+1 ⊲ 1= , then
∧

1≤8≤= 0
8 ≈ 1 8 H 0 8 .

(2) If there is < such that 1 ≤ < ≤ = and 1< H 0< and
∧
<≤8≤= 0

8 ≈ 1 8 , then∧
<≤8≤= 1

8 H 0 8 and 0=+1 ⊲ 1= .

Proof. (1) From DownSim, by induction.
(2) By assumption, 0<+1 ⊲ 0< ≈ 1< H 0< , so 0<+1 ⊲ 1< by DownMax; so

1<+1 H 0<+1 byLemma24. This establishes a base case; the rest followsby induction.
Now 0=+1 ⊲ 1= by DownMax. �

We will use these results to prove that STT⊲ and FJT are definitionally equivalent
(Theorem 31). We first define an interpretation, �, to take us from FJT to STT⊲:80

[H=(G<)]� ≔ ∀H=−1∀H=−2 . . .∀H<+1(H= ⊲ H=−1 ⊲ H=−2 ⊲ . . . ⊲ H<+1 → H<+1(G<))

Note that if < + 1 = =, then [H=(G<)]� is just H=(G<).
79 It follows that some models of (plain vanilla) STT cannot be turned into models of STT⊲ just by

assigning some meaning to “⊲”. Example: it is consistent with STT that there are exactly four type 2
entities; whereas STT⊲ (and FJT) prove that there are at least eight type 2 entities.

80 We choose variables to avoid clashes; �’s other actions are trivial.

43

Lemma 26: � : FJT −→ STT⊲ is an interpretation

Proof. For all 0 ≤ 8 < =, let)8 be FJT-formulas not containing I= or I 9 or H 9 for any
0 ≤ 9 < =. (No generality is lost here, as we can relabel variables as necessary.) By
multiple successive applications of STT⊲-Comprehension, there are I1 ⊳ I2 ⊳ . . . ⊳ I=

such that ∀G 8(I 8+1(G 8) ↔)�
8
(G 8)), for each 0 ≤ 8 < =. By Lemma 25.1, for each

0 ≤ 8 < =, we have:

∀G 8(∀H=−1 . . .∀H 8+1(I= ⊲ H=−1 ⊲ . . . ⊲ H 8+1 → H 8+1(G 8)) ↔)�8 (G
8))

i.e. ∀G 8([I=(G 8)]� ↔)�8 (G
8))

Conjoining these biconditionals and applying ∃I, we obtain [∃I= ∧
8<= ∀G 8(I=(G 8) ↔

)8(G 8))]� , i.e. an arbitrary instance of [FJT-Comprehension]� . �

Wenowswitch toworking in FJT. We introduce another abbreviation, for a bounded
version of coextensiveness, whenever : ≤ min(<, =):

0< u: 1
= iffdf

∧
8<:

∀G 8(0<(G 8) ↔ 1=(G 8))

Note the bound is 8 < :. We now define an interpretation, �, from STT⊲ to FJT:81

[H=+1(G=)]� ≔ H=+1(G=)
[H=+1 ⊲ G=]� ≔ H=+1 u= G

=

Lemma 27: FJT proves the following schemes, where well-formed:

(1) If 0< u: 2 ; and 1= u: 2 ; , then 0< u: 1=
(2) 0< u: 1= iff ∀G:(0< u: G: ↔ 1= u: G

:)
(3) 0= u=−1 1

= iff [0= H 1=]� , noting here that we must have = > 1.

Proof. (1) Trivial.
(2) Left-to-right. Suppose 0< u: 1

= ; if 0< u: 2
: , then 1= u: 2: by (1), and con-

versely. Right-to-left. Suppose ∀G:(0< u: G
: ↔ 1= u: E

:); by FJT-Comprehension,
there is some 2: u: 0< ; so 1= u: 2: , and now 0= u: 1

= by (1).
(3) Using (2), since [0= H 1=]� is ∀G=−1(0= u=−1 G

=−1 ↔ 1= u= G=−1). �

Lemma 28: � : STT⊲ −→ FJT is an interpretation.

Proof. For Down∃. Fix I=+1; by FJT-Comprehension there is some G= u= I=+1, i.e.
[I=+1 ⊲ G=]� .

For DownSim. Suppose [G= ⊳ I=+1 ⊲ H=]� , i.e. G= u= I=+1 u= G= ; so G= u= H=

by Lemma 27.1. In particular, G= ≈ H= , so [G= ≈ H=]� . Moreover, if = > 1 then
G= u=−1 H

= , so that [G= H H=]� by Lemma 27.3; if = = 1 then [G= H H=]� vacuously.
ForDownMax. Suppose [I=+1⊲G= ≈ H= H G=]� , i.e. I=+1 u= G= ≈ H= u=−1 G

= , using
Lemma 27.3. So H= u= G= , and hence I=+1 u= H= by Lemma 27.1, i.e. [I=+1 ⊲ H=]� .

81 We choose variables to avoid clashes in [H=+1 ⊲ G=]� ; �’s other actions are trivial.

44

For STT⊲-Comprehension. Let) be any STT⊲-formula not containing I=+1 (but
which may contain H=). Fix H= ; by FJT-Comprehension, there is I=+1 such that:

∀G=(I=+1(G=) ↔)�(G=)) ∧
∧
8<=

∀G 8(I=+1(G 8) ↔ H=(E 8))

i.e. ∀G=(I=+1(G=) ↔)�(G=)) ∧ I=+1 u= H
=

i.e. [∀G=(I=+1(G=) ↔)(G=))� ∧ I=+1 ⊲ H=]�

So we have arbitrary instances of [STT⊲-Comprehension]� . �

It only remains to show that � and � characterise a definitional equivalence.

Lemma 29: FJT proves this scheme: [[H=(G<)]�]� ↔ H=(G<).

Proof. Note that the following are equivalent:

(1) [[H=(G<)]�]�
(2) [∀H=−1 . . .∀H<+1(H= ⊲ H=−1 ⊲ . . . ⊲ H<+1 → H<+1(G<))]�
(3) ∀H=−1 . . .∀H<+1(H= u=−1 H

=−1 u=−2 . . . u<+1 H
<+1 → H<+1(G<))

(4) H=(G<)

The last equivalence uses Lemma 27.1, and repeated instances of FJT-
Comprehension to provide a chain H= u=−1 0

=−1 u=−2 . . . u<+1 0
<+1. �

Lemma 30: STT⊲ proves these schemes: [[H=+1(G=)]�]� ↔ H=+1(G=) and [[H=+1 ⊲
G=]�]� ↔ H=+1 ⊲ G= .

Proof. The first scheme is trivial. For the second, note that the following are equiv-
alent:

(1) [[H=+1 ⊲ G=]�]�
(2) [∧8<= ∀E 8(H=+1(E 8) ↔ G=(E 8))]�
(3)

∧
8<= ∀E 8(∀H=∀H=−1 . . .∀H 8+1(H=+1 ⊲ H= ⊲ H=−1 ⊲ . . . ⊲ H 8+1 → H 8+1(E 8)) ↔

∀G=−1 . . .∀G 8+1(G= ⊲ G=−1 ⊲ . . . ⊲ G 8+1 → G 8+1(E 8)))
(4) H=+1 ⊲ G=

For the last equivalence, first note that repeated use of Down∃ gives us chains:

H=+1 ⊲ 0= ⊲ 0=−1 ⊲ . . . ⊲ 01

G= ⊲ 1=−1 ⊲ . . . ⊲ 11

Using Lemma 25.1 twice, (3) is equivalent to:

(3′) 0= ≈ G= ∧ 0=−1 ≈ 1=−1 ∧ . . . ∧ 01 ≈ 11

Now Lemma 25.1 yields (4)⇒ (3′), and Lemma 25.2 gives (3′)⇒ (4). �

Assembling Lemmas 26–30, we obtain:

Theorem 31: STT⊲ and FJT are definitionally equivalent

45

Acknowledgements
Thanks toNeil Barton, Salvatore Florio, Peter Fritz, Luca Incurvati, StephanKrämer,
Øystein Linnebo, Nicholas Jones, Agustín Rayo, Thomas Schindler, Lukas Skiba,
and an anonymous referee for Review of Symbolic Logic.

References
Bealer, George (1982). Quality and Concept. Oxford: Oxford University Press.
Beaney, Michael, ed. (1997). The Frege Reader. Oxford: Blackwell.
Boolos, George (1985). ‘Nominalist platonism’. The Philosophical Review 94, pp.327–44.
— (2000). ‘Must we believe in set theory?’ In: Between Logic and Intuition: Essays in Honor of

Charles Parsons. Cambridge: Cambridge University Press, pp.257–68.
Button, Tim (forthcoming). ‘Level theory, part 1: Axiomatizing the bare idea of a cumulative

hierarchy of sets’. Bulletin of Symbolic Logic.
Button, Tim and SeanWalsh (2018). Philosophy and Model Theory. Oxford: Oxford University

Press.
Degen,Wolfgang and Jan Johannsen (2000). ‘Cumulative higher-order logic as a foundation

for set theory’.Mathematical Logic Quarterly 46.2, pp.147–70.
Feferman, Solomon, ed. (1995a).KurtGödel: CollectedWorks. Vol. 3.Oxford:OxfordUniversity

Press.
— (1995b). ‘Note to Gödel (1933)’. In: Feferman 1995a, pp.36–44.
Florio, Salvatore andNicholas K Jones (2021). ‘Unrestricted quantification and the structure

of type theory’. Philosophy and Phenomenological Research 102, pp.44–64.
Florio, Salvatore and Øystein Linnebo (2021). The Many and the One: A Philosophical Study of

Plural Logic. Oxford: Oxford University Press.
Florio, Salvatore and Stewart Shapiro (2014). ‘Set theory, type theory, and absolute general-

ity’.Mind 123.489, pp.157–74.
Frege, Gottlob (1891). ‘Function and concept’. In: Beaney 1997, pp.130–48.
— (1892). ‘On concept and object’. In: Beaney 1997, pp.181–93.
— (1893). Die Grundgesetze der Arithmetik. Vol. I. Jena: Pohle.
Gaskin, Richard (1995). ‘Bradley’s Regress, the copula and the unity of the proposition’. The

Philosophical Quarterly 45, pp.161–80.
— (2008). The Unity of the Proposition. Oxford: Oxford University Press.
Gödel, Kurt (1933). ‘The present situation in the foundations of mathematics’. In: Feferman

1995a, pp.45–53.
Incurvati, Luca (2020). Conceptions of Set and the Foundations of Mathematics. Cambridge:

Cambridge University Press.
Koellner, Peter (2003). ‘The Search for New Axioms’. PhD thesis. Cambridge, MA: MIT.
Krämer, Stefan (2017). ‘Everything, and then some’. Mind 126.502, pp.499–528.
Liebesman, David (2015). ‘Predication as ascription’. Mind 124, pp.517–69.
Linnebo, Øystein and Agustín Rayo (2012). ‘Hierarchies ontological and ideological’.Mind

121.482, pp.269–308.
— (2014). ‘Reply to Florio and Shapiro’. Mind 123.489, pp.175–81.
MacBride, Fraser (2011). ‘Impure reference: A way around the concept horse paradox’.

Philosophical Perpectives 25, pp.297–312.
Maddy, Penelope (1988). ‘Believing the axioms. I’. The Journal of Symbolic Logic 53.2, pp.481–

511.
Magidor, Ofra (2009). ‘The last dogma of type confusions’. Proceedings of the Aristotelian

Society 109, pp.1–29.

46

Oliver, Alex and Timothy Smiley (2016). Plural Logic. 2nd ed. Oxford: Oxford University
Press.

Orman Quine, Willard van (1970). Philosophy of Logic. Englewood Cliffs, NJ: Prentice-Hall.
Potter, Michael (2004). Set Theory and its Philosophy. Oxford: Oxford University Press.
Prior, Arthur (1971). Objects of Thought. Oxford: Oxford University Press.
Quine, Willard van Orman (1951). ‘Ontology and ideology’. Philosophical Studies 2, pp.11–5.
Rayo, Agustín (2006). ‘Beyond plurals’. In: Absolute Generality. Ed. by Agustín Rayo and

Gabriel Uzquiano. Oxford: Oxford University Press, pp.220–54.
Rayo, Agustín and Stephen Yablo (2001). ‘Nominalism through de-nominalization’. Noûs

35, pp.74–92.
Rieppel, Michael (2016). ‘Being something: Properties and predicative quantification’.Mind

125.499, pp.643–89.
Scott, Dana (1974). ‘Axiomatizing set theory’. In:Axiomatic Set Theory II. Ed. by Thomas Jech.

Proceedings of the Symposium in Pure Mathematics of the American Mathematical
Society, July–August 1967. American Mathematical Society, pp.207–14.

Strawson, Peter (1974). Subject and Predicate in Logic and Grammar. London: Methuen & Co.
— (1987). ‘Concepts and properties or predication and copulation’. The Philosophical Quar-

terly 37, pp.402–6.
Tait, William W (2001). ‘Gödel’s unpublished papers on the foundations of mathematics’.

Philosophia Mathematica 9, pp.87–126.
Trueman, Robert (2021). Properties and Propositions: The Metaphysics of Higher-Order Logic.

Cambridge: Cambridge University Press.
Whitehead, Alfred and Bertrand Russell (1910). Principia Mathematica. 1st ed. Vol. 1. Cam-

bridge: Cambridge University Press.
Wiggins, David (1984). ‘The sense and reference of predicates: A running repair of Frege’s

doctrine and a plea for the copula’. The Philosophical Quarterly 34.136, pp.311–28.
Williamson, Timothy (2003). ‘Everything’. Philosophical Perspectives 17.1, pp.415–65.
— (2013). Modal Logic as Metaphysics. Oxford: Oxford University Press.
Wright, Crispin (1998). ‘Why Frege does not deserve his grain of salt’. In: The Reason’s Proper

Study. Ed. by Bob Hale and Crispin Wright. Oxford: Oxford University Press (2001),
pp.72–90.

— (2007). ‘Onquantifying intopredicate position: Steps towards anew(tralist) perspective’.
In: Mathematical Knowledge. Ed. by Mary Leng et al., pp.150–74.

	1 Formal type theories
	2 The Sets-from-Types Theorem
	3 The (in)significance of the Sets-from-Types Theorem
	4 CTT: superfluous type-restrictions
	5 STT: type-restrictions justified
	6 The Semantic Argument
	7 Partially cumulative types
	8 Conclusion
	A Elementary facts about CTT
	B Obtaining Zr in
	C Definitional equivalence for CTT
	D Definitional equivalence for FJT
	References

