Intermediate Logic Spring Lecture Two

Possible World Semantics

Rob Trueman rob.trueman@york.ac.uk

University of York

Possible World Semantics

Introduction

Interpretations

A Semantics for K

A Semantics for T

A Semantics for S4

A Semantics for S5

 $\mathsf{K}=\mathsf{TFL}+\mathsf{MP}+\mathsf{Nec}$

$$\begin{array}{c} m \\ n \\ \Box \mathcal{A} \\ \Box \mathcal{B} \\ \end{array} \begin{array}{c} m \\ m \\ n \\ m \\ m \\ m \\ n \end{array}$$

No line above line m may be cited by any rule within the subproof begun at line m

T = K + the T Rule

 $\begin{array}{c|c} m & \Box \mathcal{A} \\ & \mathcal{A} & \mathsf{T}, m \end{array}$

S4 = T + the S4 Rule

Intermediate Logic Spring 2: Possible World Semantics $\hfill \hfill \h$

S5 = T + the S5 Rule

$$\begin{array}{c|c} m & \Diamond \mathcal{A} \\ & \Box \Diamond \mathcal{A} & \text{S5, } m \end{array}$$

This Week: Semantics

- This week, we will look at the semantics for Modal Logic (ML)
- A semantics for a language is a method for assigning truth-values to the sentences in that language
- So a semantics for ML is a method for assigning truth-values to the sentences of ML

The Big Idea

- A sentence is not just true or false, full stop
- A sentence is true or false, at a given possible world
 - $-\,$ One sentence can be true at some worlds, false at others
- $\Box \mathcal{A}$ means that \mathcal{A} is true at all possible worlds
- $\Diamond A$ means that A is true at some possible world

Possible World Semantics

Introduction

Interpretations

- A Semantics for K
- A Semantics for T
- A Semantics for S4
- A Semantics for S5

Possible Worlds

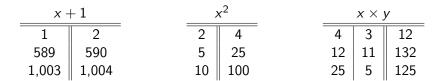
- The first thing you need to include in an interpretation is a collection of *possible worlds*
- What is a possible world!?
- Intuitive Answer: A possible world is another way that this world could have been
- Official Answer: For now, it just doesn't matter!
 - As far as the formal logic goes, the possible worlds can be anything you like
 - All that matters is that you supply each interpretation with a non-empty collection of things labelled POSSIBLE WORLDS

Introducing Valuation Functions

- Once you have chosen your collection of possible worlds, you need to find some way of determining which sentences are true at which possible worlds
- To do that, we need to introduce the notion of a valuation function
- But before we can explain what a *valuation* function is, we need to talk about what *functions* in general are

Functions

- A function is a mathematical entity which maps arguments to values
- Here are some examples:



Back to Valuation Functions

- A valuation function for ML takes in a *sentence* and a *world* as its arguments, and returns a *truth-value* as its value
 - We can use numbers to represent the truth-values: 0 represents falsehood, 1 represents truth
- So if ν is a valuation function and w is a possible world, $\nu_w(\mathcal{A})$ is whatever truth-value ν maps \mathcal{A} and w to
 - If $\nu_w(\mathcal{A}) = 0$, then \mathcal{A} is false at world w on valuation ν
 - If $u_w(\mathcal{A}) = 1$, then \mathcal{A} is true at world w on valuation u

Atomic versus Complex

- Valuation functions are allowed to map any **atomic** sentence to any truth-value at any world
- But there are rules about which truth-values more complex sentences get assigned to at a world
- We'll start with the rules for the connectives from TFL

Semantic Rules for the Truth-Functional Connectives

What about the Modalities?

• Here are the obvious semantic rules to give for \Box and \Diamond

$$\begin{aligned} &- \nu_{w_1}(\Box \mathcal{A}) = 1 \text{ iff } \forall w_2(\nu_{w_2}(\mathcal{A}) = 1) \\ &- \nu_{w_1}(\Diamond \mathcal{A}) = 1 \text{ iff } \exists w_2(\nu_{w_2}(\mathcal{A}) = 1) \end{aligned}$$

- However, while these rules are nice and simple, they turn out not to be quite as useful as we would like
- As I mentioned last week, ML is meant to be a general framework for dealing with lots of different kinds of necessity
- As a result, we need our semantic rules for □ and ◊ to be a bit more flexible

Accessibility Relations

- An accessibility relation, *R*, is a relation between possible worlds
 - When Rw_1w_2 , we say that w_1 accesses w_2
- Roughly, to say that w_1 accesses w_2 is to say that w_2 is possible *relative to* w_1
- By introducing accessibility relations, we open up the idea that a given world might be possible *relative to* some worlds, but not others
- This turns out to be a **very** fruitful idea when studying different modal systems

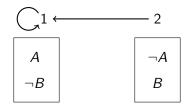
Semantic Rules for the Modalities

(6)
$$\nu_{w_1}(\Box A) = 1$$
 iff $\forall w_2(Rw_1w_2 \rightarrow \nu_{w_2}(A) = 1)$
(7) $\nu_{w_1}(\Diamond A) = 1$ iff $\exists w_2(Rw_1w_2 \wedge \nu_{w_2}(A) = 1)$

Interpretations Consist of 3 Things:

- A collection of possible worlds, W
 - W can really be a collection of **anything** you like
 - All that matters is that W be non-empty
- An accessibility relation, R
 - -R is a relation between the members of W
 - For now, R can be any relation between the members of W you like
- A valuation function, ν
 - ν can map any atomic sentence to any truth-value at any world
 - But when it comes to more complex sentences, ν has to follow rules (1)–(7)

A Diagrammatic Example



• True or False at 1?

- $B \rightarrow A$, $\Diamond A$, $\Diamond B$

• True of False at 2?

 $- B \rightarrow A$, $\Diamond \neg A$, $\Box \neg B$

Intermediate Logic Spring 2: Possible World Semantics ${\textstyle \bigsqcup}$ A Semantics for K

Possible World Semantics

- Introduction
- Interpretations
- A Semantics for K
- A Semantics for T
- A Semantics for S4
- A Semantics for S5

Semantic Concepts

- A₁, A₂, ...A_n ∴ C is valid iff there is no world in any interpretation at which A₁, A₂, ...A_n are all true and C is false
- *A* is a **logical truth** iff *A* is true at every world in every interpretation
- A is a **contradiction** iff A is false at every world in every interpretation.
- A is **consistent** iff A is true at some world in some interpretation

Soundness and Completeness Results

- As before, we will use ⊨ to express the logical consequence relation
- But we will also add a subscript, just like we did with \vdash :

-
$$\mathcal{A}_1, \mathcal{A}_2, ... \mathcal{A}_n \stackrel{.}{\ldots} \mathcal{C}$$
 is valid

$$-\mathcal{A}_1, \mathcal{A}_2, ... \mathcal{A}_n \vDash_{\mathsf{K}} \mathcal{C}$$

- Why did we add the K subscript? Because of the following results:
 - **Soundness:** If $A_1, A_2, ..., A_n \vdash_{\mathsf{K}} C$, then $A_1, A_2, ..., A_n \vDash_{\mathsf{K}} C$
 - **Completeness:** If $A_1, A_2, ...A_n \vDash_{\mathsf{K}} C$, then $A_1, A_2, ...A_n \vdash_{\mathsf{K}} C$

For Proofs, see a Textbook!

- Stating these soundness and completeness results is one thing, *proving* them is another!
- We won't try to do that in this module, but you can find proofs of (similar) results in any of the following textbooks:
 - Garson's Modal Logic for Philosophers
 - Priest's An Introduction to Non-Classical Logic
 - Hughes and Cresswell's A New Introduction to Modal Logic

Intermediate Logic Spring 2: Possible World Semantics $\hfill A$ Semantics for T

Possible World Semantics

- Introduction
- Interpretations
- A Semantics for K
- A Semantics for T
- A Semantics for S4
- A Semantics for S5

What about the Stronger Modal Systems?

- Our definition of validity is sound and complete for K
- Where does that leave the more powerful modal systems we looked at last week: T, S4 and S5?
- Well, they are all **unsound**, relative to that definition of validity!

 $- \Box A \vdash_{\mathsf{T}} A$, but $\Box A \not\vDash_{\mathsf{K}} A$

- Does that mean that these stronger systems are a waste of our time?
- Not at all! When dealing with modal systems stronger than K, we just need to tweak our definition of validity to fit

Reflexive Accessibility Relations

- When I introduced the idea of an *accessibility relation*, I said that it could be any relation between worlds you liked
 - That is how we were thinking of accessibility relations in our definition of \vDash_{K}
- But if we wanted, we could start putting restrictions on the accessibility relation
- For example, we might insist that it must be **reflexive**:

– ∀wRww

A New Definition of Validity

- $\mathcal{A}_1, \mathcal{A}_2, ... \mathcal{A}_n \vDash_{\mathsf{T}} \mathcal{C}$ iff there is no world in any interpretation which has a reflexive accessibility relation, at which $\mathcal{A}_1, \mathcal{A}_2, ... \mathcal{A}_n$ are all true and \mathcal{C} is false
- It turns out that T is sound and complete relative to this new definition of validity
 - **Soundness:** If $A_1, A_2, ..., A_n \vdash_T C$, then $A_1, A_2, ..., A_n \models_T C$
 - **Completeness:** If $A_1, A_2, ...A_n \vDash_T C$, then $A_1, A_2, ...A_n \vdash_T C$

Intermediate Logic Spring 2: Possible World Semantics ${\displaystyle \bigsqcup_{}}$ A Semantics for T

Validating the T Rule

- If you want proofs of these results, you should look at the textbooks I mentioned earlier
- However, it is relatively easy to see how insisting that the accessibility relation must be reflexive will vindicate the T rule

$$\begin{array}{c|c} m & \Box \mathcal{A} \\ & \mathcal{A} & \mathsf{T}, m \end{array}$$

 To see this, imagine trying to cook up a counter-interpretation to this: □A ⊨_T A

Validating the T Rule

- You would need to construct a world, w, at which □A was true, but A was false
- If □A is true at w, then A must be true at every world w accesses
- But since the accessibility relation is reflexive, w accesses w
- So \mathcal{A} must be true at w
- But now \mathcal{A} must be true *and* false at w!

Intermediate Logic Spring 2: Possible World Semantics A Semantics for S4

Possible World Semantics

- Introduction
- Interpretations
- A Semantics for K
- A Semantics for T
- A Semantics for S4
- A Semantics for S5

Transitive Accessibility Relations

• As well as requiring that our accessibility relation be reflexive, we might also require that it be **transitive**:

 $- \forall w_1 \forall w_2 \forall w_3 ((Rw_1w_2 \land Rw_2w_3) \rightarrow Rw_1w_3)$

- A₁, A₂, ...A_n ⊨_{S4} C iff there is no world in any interpretation which has a reflexive and transitive accessibility relation, at which A₁, A₂, ...A_n are all true and C is false
- It turns out that S4 is sound and complete relative to this new definition of validity
 - **Soundness:** If $A_1, A_2, ...A_n \vdash_{S4} C$, then $A_1, A_2, ...A_n \models_{S4} C$
 - **Completeness:** If $A_1, A_2, ...A_n \vDash_{S4} C$, then $A_1, A_2, ...A_n \vdash_{S4} C$

Intermediate Logic Spring 2: Possible World Semantics $\hfill A$ Semantics for S4

Validating the S4 Rule

• It is relatively easy to see how insisting that the accessibility relation must be reflexive and transitive will vindicate the S4 rule

$$\begin{array}{c|c} m & \Box \mathcal{A} \\ & \Box \Box \mathcal{A} & \mathsf{S4, } m \end{array}$$

 To see this, imagine trying to cook up a counter-interpretation to this: □A ⊨_{S4} □□A

Validating the S4 Rule

- You would need to construct a world, w₁, at which □A was true, but □□A was false
- If □□A is false at w₁, then w₁ must access some world, w₂, at which □A is false
- Equally, if □A is false at w₂, then w₂ must access some world, w₃, at which A is false
- We just said that w₁ accesses w₂, and w₂ accesses w₃; so since the accessibility relation is transitive, w₁ must access w₃
- Since □A is true at w₁, and w₃ is accessible from w₁, it follows that A must be true at w₃
- So \mathcal{A} is true and false at w_3 !

Intermediate Logic Spring 2: Possible World Semantics A Semantics for S5

Possible World Semantics

- Introduction
- Interpretations
- A Semantics for K
- A Semantics for T
- A Semantics for S4
- A Semantics for S5

An Equivalence Relation for an Accessibility Relation

• As well as requiring that our accessibility relation be reflexive and transitive, we might also require that it be **symmetric**:

 $- \forall w_1 \forall w_2 (Rw_1w_2 \rightarrow Rw_2w_1)$

• Logicians call relations which are reflexive, symmetric and transitive, equivalence relations

Another Definition of Validity

- A₁, A₂, ...A_n ⊨_{S5} C iff there is no world in any interpretation whose accessibility relation is an equivalence relation, at which A₁, A₂, ...A_n are all true and C is false
- It turns out that S5 is sound and complete relative to this new definition of validity
 - **Soundness:** If $A_1, A_2, ...A_n \vdash_{S5} C$, then $A_1, A_2, ...A_n \models_{S5} C$
 - **Completeness:** If $A_1, A_2, ...A_n \vDash_{S5} C$, then $A_1, A_2, ...A_n \vdash_{S5} C$

Intermediate Logic Spring 2: Possible World Semantics $\hfill A$ Semantics for S5

Validating the S5 Rule

• It is relatively easy to see how insisting that the accessibility relation must be an equivalence relation will vindicate the S5 rule

$$\begin{array}{c|c} m & \Diamond \mathcal{A} \\ & \Box \Diamond \mathcal{A} & \text{S5, } m \end{array}$$

.

 To see this, imagine trying to cook up a counter-interpretation to this: ◊A ⊨_{S5} □◊A

Validating the S5 Rule

- You would need to construct a world, w₁, at which ◊A was true, but □◊A was false
- If ◊A is true at w₁, then w₁ must access some world, w₂, at which A is true
- Equally, if $\Box \Diamond A$ is false at w_1 , then w_1 must access some world, w_3 , at which $\Diamond A$ is false
- Since the accessibility relation is symmetric, we can infer that w₃ accesses w₁
- Thus, w₃ accesses w₁, and w₁ accesses w₂, and since the accessibility relation is also transitive, we can infer that w₃ accesses w₂
- But earlier we said that $\Diamond A$ is false at w_3 , which implies that A is false at every world which w_3 accesses
- So \mathcal{A} is true and false at w_2 !

A Universal Accessibility Relation

- In the definition of \vDash_{S5} , we stipulated that the accessibility relation must be an equivalence relation
- But it turns out that there is another way of getting a notion of validity fit for S5
- Rather than stipulating that the accessibility relation be an equivalence relation, we can instead stipulate that it be a **universal** relation

 $- \forall w_1 \forall w_2 R w_1 w_2$

One Last Definition of Validity

- A₁, A₂, ...A_n ⊨_{S5} C iff there is no world in any interpretation which has a universal accessibility relation, at which A₁, A₂, ...A_n are all true and C is false
- It turns out that S5 is sound and complete relative to this alternatived definition of \vDash_{S5}
 - **Soundness:** If $A_1, A_2, ...A_n \vdash_{S5} C$, then $A_1, A_2, ...A_n \models_{S5} C$
 - **Completeness:** If $A_1, A_2, ...A_n \vDash_{S5} C$, then $A_1, A_2, ...A_n \vdash_{S5} C$

What does this Tell Us?

- These last results tell us that if we are dealing with a notion of necessity according to which every world is possible relative to every world, then we should use S5
- Most philosophers assume that the notions of necessity that they are most concerned with are of this kind
 - Logical necessity
 - Metaphysical necessity
- So S5 is the modal system that most philosophers use most of the time

Intermediate Logic Spring 2: Possible World Semantics $\hfill A$ Semantics for S5

Seminar 2

- The reading for Seminar 2 is:
 - A Modal Logic Primer, §4
- Please attempt at least some of the exercises before the seminar. (Why not meet up in groups to do the exercises together?)

Intermediate Logic Spring 2: Possible World Semantics A Semantics for S5

Lecture & Seminar 3

- For next Lecture & Seminar 3, read:
 - David Lewis, On the Plurality of Worlds, ch.2 §§2.1-2.6
- Access to this chapter is available via the Reading List on the VLE
- A number of study questions will shortly be posted on the VLE